Effective use of Imagery Assisted Virtual Reality in Pitch Recognition and Sport Imagery Ability Development

Authors: Lindsay Ross-Stewart1, Landon Braun2, & Victoria Hardcastle3

1Department of Applied Health, Southern Illinois University Edwardsville
2College of Health Professions and Sciences, University of Wisconsin Milwaukee
3Department of Intercollegiate Athletics, Savannah State University

Corresponding Author:
Dr. Lindsay Ross-Stewart
Campus Box 1126
Southern Illinois University Edwardsville
Edwardsville, IL, 62026
lrossst@siue.edu
(618) 650-2410

Lindsay Ross-Stewart, PhD is an Associate Professor in the Department of Applied Health at Southern Illinois University Edwardsville. Dr. Ross-Stewart is a CMPC® and a Canadian Sport Psychology Association Mental Performance Consultant (MPC).

Landon Braun, M.S., is a Doctoral Student at the University of Wisconsin-Milwaukee in the College of Health Professions & Sciences. At UWM Landon works as a Teaching Assistant in the School of Rehabilitation Sciences & Technology where he teaches courses related sport and performance psychology to both undergraduate and graduate students.

Victoria Hardcastle, M.S., is an Assistant Softball Coach at Savannah State University.

Effective use of Imagery Assisted Virtual Reality in Pitch Recognition and Sport Imagery Ability Development

ABSTRACT

Abstract: Imagery can be described as experience that mimics real world experiences through the combination of using different sensory modalities in the absence of actual perceptions (43). One uses visual, auditory, kinesthetic (touch), smell, and taste to create a picture simulating real world environments and scenarios. Imagery can be used to enhance various aspects of performance by mentally preparing someone for an upcoming competition or helping an athlete focus specifically on a task (19). Virtual reality, understood in this study as a first-person filmed, computer presented, immersive simulation of a real environment (32), has become increasingly more utilized in sport performance settings (7, 37, 44). Combing these two elements, the purpose of this study was to investigate an applied Imagery Assisted Virtual Reality (IAVR) intervention on imagery ability and pitch recognition in a sample of eleven National Collegiate Athletic Association (NCAA) Division One softball players at a Midwestern University. This study’s results indicated a significant increase in global imagery ability as well as in four of the five functions of imagery (CS, CG, MG-A, MG-A) and in pitch type recognition. Practically, the results from this study suggest that the IAVR intervention can create an impactful experience to assist athletes in improving their performance and psychological skills.

Keywords: Psychological Skills, Pitching Ability, Softball, Virtual Reality, Collegiate Sport

Virtual reality technology has become an increasingly common tool used in sport (e.g., 3 – 4, 7, 14, 17, 24, 26; 28, 31, 37, 44) with application in areas such as injury rehabilitation (31), and performance enhancement (2, 27, Wood et al., 2020). In fact, virtual reality has been labeled the next step forward for athletic training (47) and has been the subject of several states of the field (e.g., 7, 26).


Virtual reality was originally defined as a computer-generated, artificial, or simulated environment created by technological software (38). Within sport, it has been defined as instances when individuals are engaged in a sport that is represented in a computer-simulated environment which aims to induce a sense of being mentally or physically present and enables interactivity with the environment (28). One important aspect that virtual reality training is lacking is a focus on how virtual reality can assist in increasing an athlete’s psychological skill development (32). While virtual reality can impressively replicate environments and simulate real-world reactions; it still lacks the ability to capture an emotional response to the environment (32). As we know that how one feels and their perceptions of the sporting environment are necessary for performance, past research has shown this to be a challenge in traditional VR interventions (11) Research on the incorporation of imagery into a virtual reality training program has shown it to be a promising way to gain the advantages of VR and to overcome this potential challenge (32, 33; 34).


In the context of sport, White and Hardy (45) defined mental imagery as: an experience that mimics real experience. We can be aware of “seeing” an image, feeling movements as an image, or experiencing an image of smell, tastes, or sounds without actually experiencing the real thing (23). One approach to the application of imagery in sport is the revised applied model of imagery, which states that athletes may use it to achieve different outcomes (10). To achieve desired outcomes, imagery type, what athlete’s images and imagery function, the why or the purpose of an athlete’s image should be considered (29). Imagery type is split into two categories, cognitive and motivational, with each operating at specific and general levels (43). Cognitive refers to performance enhancement while motivational focuses on confidence enhancement (5). Imagery types and functions have been defined as: Cognitive specific (CS) helps an athlete to work on skill learning, development, and execution. Cognitive general (CG) affords the athlete the ability to image different strategies and routines. Motivational specific (MS) imagery focuses on enhancing motivation through goal setting and goal achievement. Motivational general arousal (MGA) imagery focuses on somatic and emotional experiences such as regulating stress and arousal. Motivational general mastery (MGM) imagery concentrates on coping, gaining, and maintaining self-confidence, and staying focused (10, 18) identify. Athletes might use each of the imagery types alone or in combination with one another, depending on the meaning an athlete applies to the image (29). For example, an athlete can use cognitive specific imagery (CS type) to image themselves executing a skill successfully (CS function), but this image may also increase their confidence, which would be for the function type MG-M (10).


Focusing on the way in which Imagery and Virtual Reality could be used together, Ross-Stewart and colleagues developed Imagery Assisted Virtual Reality (IAVR), a training protocol that involves an immersive virtual reality experience for users in which kinesthetic awareness is incorporated with users being able to see a first-person simulated scenario coupled with an individualized imagery script aimed at enhancing psychological skills and performance (32). IAVR entailed a first-person filmed batting environment from an on-deck position all the way up to batting and taking swings. This video was then followed by a blank screen with an individualized guided imagery script tailored to each individual player that was either audio recorded in the video itself or written down. In their initial study they found that participants who completed an IAVR intervention increased their skills imagery (CS), goal imagery (MS) and mastery imagery (MG-M) as measured by the Sport Imagery Ability Questionnaire (SIAQ; 43). Furthermore, results suggested an increase in overall imagery use, positive self-talk and automaticity in both practice and competition through the length of the study. Additionally, negative thinking during competition decreased, as measured by the Test of Performance Strategies (TOPS; 39). The finding that imagery and virtual reality used together can impact psychological constructs was supported by Frank et al (2022) who found self-efficacy to increase in a physical activity task using imagery and virtual reality. Furthering the support for IAVR, a recent study on the impact of VR on imagery ability and emotional affect found that VR can “induce emotional arousal and affect the mental imagery skills and positive affect of athletes” (46).


Baseball hall of famer Ted Williams referred to batting as “the hardest thing to do in sports” (35). If a softball pitcher throws a 60-mph fastball, it will reach Homeplate in .45 seconds. However, if she throws a changeup at 50 mph, it will reach Homeplate in .55 seconds. Batters have a brief window of opportunity in which they must recognize the pitch and decide to swing or not swing (20). Pitch recognition is the batter’s ability to recognize which way the seams on the ball are spinning/rotating and the trajectory of the ball (20). These two components can be categorized by pitch type (fastball, change-up, drop ball, rise ball) and prediction of eventual location of the pitch (strike, ball, inside, outside) (13). Being able to recognize pitches is an essential aspect of batting. However, there exists little agreement on what the skill of pitch recognition consists of and how to improve it (13).
Each pitch is comprised of different combinations of velocity, rotation, and trajectory cues. Outside of rotation and trajectory cues, there are other sources of information a batter might be receiving information from without being aware of it. These cues include knowledge of the pitcher, game situation, and batter’s count (20). A batter’s ability to recognize which pitch is being thrown will allow them to conduct their swing accordingly and increase performance. This recognition will allow a batter to make more solid hits and recognize the difference between a ball and strike. This recognition will also allow them to either look for pitches they want to hit or draw more walks. Therefore, pitch recognition is a pivotal skill for softball players to obtain if they want to achieve top performance.


The use of VR has been shown to be an effective tool for the increase of strike zone and pitch recognition (16). Virtual reality training has also been shown to lead to a greater sensitivity to visual information provided by the ball trajectory, seam rotation, and improved ability to use monocular cues to determine whether a pitch would cross the plate in the strike zone or not (16). Furthermore, Ranganathan and Carlton (30) found that VR was effective when baseball players had visual information of an entire pitch in their VR environment and ball trajectory yielded a higher prediction accuracy.


Based on both past research in VR and IAVR, merging imagery and virtual reality may enhance the psychological skill and strategy development of athletes more than if they are used alone. Taken with recent suggestions for more research on the effectiveness of VR on both skill acquisition and psychological change in sport (e.g., 7 17, 26, 28 31, 41), specifically, Cotterill’s assertion that “there is also a need for more applied case studies that outline the procedures adopted and reflect on the outcomes obtained using VR in sport psychology–relevant ways”(7, p.22). The purpose of this paper is to highlight an applied Imagery Assisted Virtual Reality intervention that was used with a National Collegiate Athletic Association (NCAA) Division I softball team. Specifically, hitters were given the opportunity to participate in an intervention that designed individualized imagery assisted virtual reality video for them and then they were assessed to see how it impacted their imagery ability, and pitch recognition. Based on past research, it was hypothesized that both global imagery ability and pitch recognition would increase from baseline to post intervention. Furthermore, based on past research on IAVR (32) it was hypothesized that CS, CG, and MG-M imagery would significantly increase from baseline to post intervention. No hypothesis was made related to MS and MG-A imagery due to lack of past research, at the time of data collection, supporting the use of this imagery increasing using IAVR.

Materials and Methods

Methods

Participants
Participants were 11 NCAA Division One female softball players at a Midwestern University. Of the 11 participants five were right-handed batters and six were left-handed batters. Their ages ranged from 18-24 years old.


Measures
Sport Imagery Ability Questionnaire (43; SIAQ): The SIAQ was designed to measure an athlete’s ability to image different content (i.e., strategies, skills, feelings, and goals) and the frequency that an athlete images. The questionnaire has 15 questions rated from 1 (very hard to image) to 7 (very easy to image). The questions are divided into five different subscales; skill imagery ability (e.g., defining a specific skill), strategy imagery ability (e.g., making/executing strategies), goal imagery ability (e.g., winning the game), affect imagery ability (e.g., positive emotions connected with the sport), and mastery imagery ability (e.g., positive outlook when things are not going well). An overall sport imagery ability score and all subscales were calculated separately. To score each of the five subscales, questions for the subscale were summed and divided by the number of questions for each source. The SIAQ has been found to have good validity and reliability (43)


Pitch recognition test: A Pitch Recognition test was designed for this study to assess a participant’s ability to recognize a pitch type (fastball. change-up, etc.) and pitch location (strike/ball). Participants viewed twelve pitches via GoPro film from a pitcher. The film the participants viewed was from the same film they viewed in their IAVR. There were five seconds between each pitch allowing for the participants to circle both the pitch type and pitch location of the previously viewed pitch. The pitch recognition test had twelve different pitches for the baseline testing and the post intervention testing. The number of pitches they correctly identified for both type and location divided by twelve was their total pitch recognition scores. Both pitch type and pitch location were scored as subscale.

Procedure
Institution IRB was obtained. Players were recruited from an NCAA (National Collegiate Athletic Association) Division I softball team. Eleven players signed up to participate in the intervention. Participants who gave consent were assigned a time to film their first-person VR film. Filming was done both on the players’ field and in their indoor hitting facility to make sure it properly mimicked where they were currently practicing. During filming, participants wore dual mounted GoPro headsets on top of their batting helmets to gain first person filming perspectives. Participants were instructed to go through their whole routine starting with preparation for the on-deck circle by stepping into the batter’s box. Filming was also done to gain a third person perspective using a dual mounted GoPro headset strapped to a tripod and placed in the batter’s box. For this film day, three pitchers from the same team, who volunteered to help with the study were filmed pitching from the mound (one left-handed, two right-handed). All three of the pitchers threw their pitches (fastball, change-up, rise ball, etc.) for both right-handed batter and left-handed batter viewpoints. Ninety-six pitches were filmed to allow for a variety of options for the pitching videos.
After the filming was complete the research team used Shotcut to edit the film into two pitch recognition videos, and an individualized VR video for each participant. Videos of the pitches were made to assess pitch recognition at baseline and time 2. To make these videos, the third-person video was edited by clipping each pitcher’s pitch into its own. This allowed the researchers to integrate all three pitchers’ pitches into a specific order. Researchers then went through and selected twelve pitches out of the right-handed batter’s film and a separate twelve out of the left-handed batter’s film. These clips were arranged to simulate two full at bats, with a five second black screen between each pitch. This method was replicated to make the pitch recognition video that would be used for the post test.


To make the IAVR videos, first-person perspective film was edited to start when participants start their pre-at bat routine. The clip ended when the batter received a pitch from the pitcher while they were in the batter’s box. In these videos pitch clips were aligned to simulate a real world at bat, including timing between bats. To develop the guided imagery scripts that would be recorded as audio into the Virtual Reality videos, participants individually met with the research team to discuss their experiences at bat. The imagery scripts were written according to the guidelines suggested by (42) making sure to incorporate both stimulus and response propositions (8, 22) to the imagery scripts. The imagery scripts were broken down and recorded into two audio files. The first recording consisted of each participant’s rituals and routines starting when they are “in the hole” all the way to being in the batter’s box. This included getting equipment on (batting gloves, elbow guard, etc.), walking to the on-deck circle, on deck circle rituals, walking to the batter’s box, and pre at bat rituals. Some participants opted to have their walk-up song playing in the background during their imagery script when walking from the on-deck circle to the batter’s box.


The second recording started when each participant was in the batter’s box. Depending on how the participant wanted their imagery script written, they might receive a ball or strike first. Then, hitting to a designated spot of their choosing. Participants then had a choice of running through first, running to second, or sliding into second. The scenarios and cues they picked up from the first base coach were all individualized to each participant. These individual imagery scripts were turned into audio files and then embedded into the participants corresponding virtual reality film to make the Imagery Assisted Virtual Reality interventions for each participant. The IAVR was set up as the following: imagery script of preparation for an at bat, 3rd person pitch film, first person film from the dugout to the batter’s box, and then imagery script of hitting the ball and making it to a base safe.
Before being given their IAVR film, participants watched the baseline pitch recognition video and marked the pitch type and location of each video. Each player was provided with a pair of virtual reality goggles and a locked cell phone loaded with their individualized video. Instructions were also provided to participants on how to download the videos onto their personal phone if they preferred to have it on their own phone. Participants were instructed to watch their IAVR video at least once a day using virtual reality goggles. Participants were also informed that if they requested any changes to their IAVR (i.e., imagery speed, tone, pitch order) the research team would make the changes at any time during the intervention.
After participants had the IAVR video for six weeks they completed a post intervention pitch recognition test where they watched the second pitching video that had been made and once again recorded what type and location, they believed they saw for each pitch. They also completed the SIAQ at this time.


Results
Review of the data indicated that two participants had missed one question each. The means for each question were used as a replacement so the participants data could still be used in the analysis, as deemed appropriate in inferential statistics (21). Next descriptive statistics for baseline and post intervention were calculated for each of the five imagery ability subscales and global imagery ability score, as well as total pitch recognition, pitch type and pitch location. Paired samples t-tests were run to assess mean changes from baseline to post intervention for all imagery ability subscales and total imagery score as well as for the three pitch assessments. As the data were expected to increase from baseline to post intervention across all variables a one tailed test was employed with an alpha level of 0.05. Cohens d were calculated for all pairs with 0.21 – 0.59 considered a small effect .60 – .79 a medium effect and 0.80 to 100 a large effect (6).


Imagery
Participants’ global imagery ability was higher at post-testing (m = 5.69, sd = 0.79) as opposed to baseline (m = 5.02, sd = 0.69), which was found to be a statistically significant difference, t(10) = -2.70, p = .01, d = 0.91). Skill imagery ability change from baseline to post intervention was also significant (t(10) = -2.51, p = 0.02, d = 0.73), indicating that the participants increased their skill imagery ability from baseline (m = 4.79, sd = 1.12) to post intervention (m = 5.63, sd = 1.20). Strategy imagery ability was found to have a statistically significant change (t(10) = -2.05, p = .03, d = 0.63). Means indicated an increase from 4.73 (sd =0.94) at baseline to 5.30 (sd =0.88) at post intervention. The affect imagery ability increase was statistically significant (t(10) = -2.07 p = 0.03, d = 0.81). Means indicated a change from 5.55 (sd = 0.83) at baseline to 6.22 at post intervention (sd = 0.79). Mastery imagery ability from baseline (m = 4.88, sd = 0.86) to post test (m = 5.60, sd = 0.79) was also statistically significant (t(10) = -2.05, p = 0.02, d = 0.88). Goal imagery did not have a statistically significant change from baseline (m = 5.15, sd = 1.02) to post intervention (m = 5.70, sd = 1.03, (p = 0.07, d = 0.53).


Pitch Statistics
Pitch type recognition was found to be statistically significant from baseline (m = 6.60, sd = 3.13) to post intervention (m = 9.10, sd = 2.08), t(10) = -2.28, p = .04) with a large effect size (d = 0.94). Pitch location recognition and total pitch recognition both increased, however neither were statistically significant changes (p >0.05). Percentage change was also recorded for pitch type as that is the common way to assess these statistics in applied softball scenarios. See Table 1 for full statistics for Pitch.

Table 1. Average Number and percentage of pitches accurately identified at baseline and Post Intervention

# Correct Baseline# Correct  Post Intervention# Correct Pitch Type Baseline# Correct Pitch Type Post Intervention# Correct Pitch Location Baseline# Correct Pitch Location Post Intervention
#%#%#%#%#%#%
4.134.175.949.176.6559.175.83758.337.260

Discussion
This study investigated the effect of an applied Imagery Assisted Virtual Reality intervention on NCAA Division I softball players’ imagery ability and pitch recognition. This study hypothesized an increase in global imagery ability, pitch recognition as well as increases in skill (CS), strategy (CG), and Confidence (MG-M) imagery. Overall, the hypotheses were supported by the findings of this study.


This study’s results indicated a significant increase in the participants’ global imagery ability with this change indicating a large effect size. Furthermore, of the five imagery subscales all showed increases from baseline to post intervention, with Skill, Strategy, Mastery and Affect imagery ability increasing from baseline to post intervention. The increase in global imagery ability and subscale increases equates to the athlete’s ability to image being easier in real sport situations (49). This is of applied significance as this increase in global imagery could assist athletes in mental preparation before engaging in sport specific performance endeavors. It is also of importance as we have few studies demonstrating how to increase imagery ability even though we know the ability to image is important for athletes who want to use imagery to increase their sport performance. As imagery has been shown over and over again to increase sport performance (e.g., 9), knowing how to increase imagery ability is an important step in pursuit of maximizing the benefits of this psychological strategy.
This study demonstrates how virtual reality can assist a person’s imagery ability when showing real world video in correlation to their imagery script. We can postulate that global imagery ability increased in part due to the IAVR increasing the functional equivalency of the intervention (32). These results align with research on functional equivalence (22 and the PETTLEP model of imagery which states that all senses need to be engaged to be fully immersed in an imagery script (e.g., 1, 19; 36, 40).


The results indicated significant increases in confidence (MG-M) and affect (MG-A) imagery ability which equates to an athlete’s ability to image and be in control and cope during difficult sporting situations, and image positive content withing their sport (43). It may be that these motivational imagery subscales had a significant increase due to cue words (e.g., calm, focus, confidently) that were inserted into each participants imagery script to stimulate an emotional response. These cue words, chosen by each participant, were combined with repeated phrases such as “take a deep breath,” “feel yourself,” and “you are confident” were also used to stimulate an emotional response from participants. Some participants also opted to have their walk-up song play during their imagery assisted virtual reality. This auditory connection between virtual reality film and real-world stimulus may have allowed participants to emotionally connect to the IAVR and use it to regulate arousal. It should be noted that although it was not hypothesized that affect imagery (MG-A) would increase due to lack of research at the time of study, this finding is supported by recent research that has come out since data was collected for this study (46). The increase in MG-A imagery ability indicates that athletes experienced some type of realistic emotion within the imagery experience. This finding coincides with previous research (25, 27) that posits increases in affect imagery within virtual reality films may be attributed to social presence within these virtual reality films. Lee and colleagues (25) believed that responses to social presence within virtual environments may be due to the players’ expectations of interactions during an actual game. Within this study, social presence was maintained throughout virtual reality film by incorporating the presence of teammates in the videos. Finally, there were significant increases in skill (CS), and strategy (CG) imagery ability, which supported the hypothesis and is in line with past research (32). This makes sense as the IAVR gave the players extra opportunities to see themselves engaging in the skill of hitting and through imagery incorporated their individual strategies for how they were going to hit the ball.


Pitch Statistics
The hypothesis that pitch recognition would increase was partially supported. Pitch type recognition was found to be significantly increased from pre to post intervention. However, although pitch location recognition and total pitch recognition both increased, neither change was statistically significant. Percentage change was also recorded for pitch type as that is the common way to assess these statistics in applied softball scenarios and gave real world application information when it came to pitch recognition change. Of particular importance in this study was the finding that pitch type recognition increased by over 20% (from recognizing 6.6/12 – 9.1/12) from baseline to post intervention. Although not statistically significant the change in total pitch recognition increased by two pitches (4.1/12 to 5.9/12, 15%) which in an applied setting is a noteworthy performance increase. As the IAVR in this study was not filmed with 360-degree cameras it may be that this affected the batter’s sense of where the pitch was over the base, leading to a lack of pitch location increase. However, the IAVR focus on first person perspective of the pitch coming at them just as it would in a real game essentially gave them more reps “reading” the pitch where they did not have to think about anything else (what they were going to do), which may be part of why their pitch type recognition increased. These findings are important for those within the softball world as we know that recognizing a pitch can predict accuracy of an at bat (e.g., 30, 16). Although it is noted that pitch recognition is an essential aspect to batting, there is little agreement on how to improve it (13). This study’s results demonstrate the effectiveness of IAVR on increasing pitch type recognition and could therefore be a low-cost tool used by teams to increase the skill of pitch recognition, and therefore batting percentages.


While this study is an important addition to the new area of Imagery Assisted Virtual Reality, there are limitations to consider. The first limitation of this study was the sample size. Although the small sample size is acknowledged as a limitation it should be noted that even with this small sample size, the effect sizes in this study were medium to high indicating that with a larger sample these findings may be even more pronounced. As this was an applied study using players who were in season, it was considered unethical to make some of them a control group. Specifically, having some players given an advantage over others, an advantage that is not shown to disappear over time, would be unfair to those in the control group, impacting both individual athletes and the team as a whole. Therefore, not having a control group, although a deliberate decision, does lead to the lack of knowledge as to whether another unexpected variable may have impacted these results.


As IAVR is a new strategy for increasing imagery ability and sport performance, there are several areas future researchers should consider. Current research on IAVR has focused on the effect of IAVR on imagery ability it may be useful to focus on imagery use (facilitative and debilitative) as the ability to image is of importance only in that it effects imagery use effectiveness (12). Therefore, future research should focus specifically on the effect of IAVR on amount of deliberate imagery use both during and after they complete the IAVR protocol. To that point, future applied research on IAVR would benefit from tracking season performance post intervention, or by athletes who use IAVR throughout a season. Additionally, the impact of IAVR on pitch recognition during in game would be a worthy pursuit. At this time, we do not know what the optimal length of an IAVR protocol would be for athlete imagery, psychological skill, or athletic performance. All these areas are ripe for future research to investigate.


Conclusion
Overall, the results of this study further support the value of an Imagery Assisted Virtual Reality protocol being used in sport. Specifically, this study showed that IAVR can increase performance statistics (pitch recognition) and imagery ability.


Applications in Sport
These findings have practical significance as they lend support for IAVR to be used by softball players to further both their in-game skills and psychological skills development. Furthermore, these findings add to the existing literature that indicates IAVR may be a cost effective and impactful tool for athletes in various sports.

References

  1. Anuar, N., Cumming, J., & Williams, S. E. (2015). Effects of applying the PETTLEP model on vividness and ease of imaging movement. Journal of Applied Sport Psychology, 28(2), 185-198. doi:10.1080/10413200.2015.1099122
  2. Bedir, D., & Erhan, S. E. (2021). The effect of virtual reality technology on the imagery skills and performance of target-based sports athletes. Frontiers in Psychology, 11, 2073. doi.org/10.3389/fpsyg.2020.02073
  3. Bideau, B., Multon, F., Kulpa, R., Fradet, L., Arnaldi, B. & Delamarche, P. (2004). Using virtual reality to analyze links between handball thrower kinematics and goalkeeper’s reactions. Neuroscience Letters, 372(1-2), pp.119-122. https://doi.org/10.1016/j.neulet.2004.09.023
  4. Bird, J. M. (2020). The use of virtual reality head-mounted displays within applied sport psychology. Journal of Sport Psychology in Action, 11(2), 115-128. https://doi.org/10.1080/21520704.2018.1563573
  5. Callow, N., & Hardy, L. (2001). Types of imagery associated with sport confidence in netball players of varying skill levels. Journal of Applied Sport Psychology, 13(1), 1-17. doi:10.1080/104132001753155921
  6. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:
  7. Cotterill, S. (2018). Virtual reality and sport performance: Implications for applied practice. Case Studies in Sport and Exercise Psychology, 2, 21-22. doi:10.1123/cssep.2018-0002
  8. Cumming, J., Cooley, S. J., Anuar, N., Kosteli, M.-C., Quinton, M. L., Weibull, F., & Williams, S. E. (2016). Developing imagery ability effectively: A guide to layered stimulus response training. Journal of Sport Psychology in Action, 8(1), 23–33. doi: 10.1080/21520704.2016.1205698
  9. Cumming, J., & Ramsey, R. (2008). Imagery interventions in sport. In Advances in applied sport psychology (pp. 15-46). Routledge. doi: 10.13140/2.1.2619.2322.
  10. Cumming, J., & Williams, S. E. (2013). Introducing the revised applied model of deliberate imagery use for sport, dance, exercise, and rehabilitation. Movement & Sport Sciences-Science & Motricité, (82), 69-81. https://doi.org/10.1051/sm/2013098
  11. Cuperus, A. & Van der Ham, I. (2016). Virtual reality replays of sports performance: Effects on memory, feeling of competence, and performance. Learning and Motivation, 56, pp.48-52. https://doi.org/10.1016/j.lmot.2016.09.005
  12. Di Corrado, D., Guarnera, M., Vitali, F., Quartiroli, A., & Coco, M. (2019). Imagery ability of elite level athletes from individual vs. team and contact vs. no-contact sports. Brain, Cognition, and Mental Health, 7, e6940. doi: https://doi.org/10.7717/peerj.6940
  13. Fadde, P. J. (2006). Interactive video training of perceptual decision-making in the sport of baseball. Retrieved from http://peterfadde.com/Research/Baseball.pdf
  14. Fink, P., Foo, P., & Warren, W. (2009). Catching fly balls in virtual reality: A critical test of the outfielder problem. Journal of Vision, 9(13), pp.14-14. doi: https://doi.org/10.1167/9.13.14
  15. Frank, C., Hülsmann, F., Waltemate, T., Wright, D. J., Eaves, D. L., Bruton, A., Botsch, M., & Schack, T. (2022). Motor imagery during action observation in virtual reality: the impact of watching myself performing at a level I have not yet achieved. International Journal of Sport and Exercise Psychology, 1-27. https://doi.org/10.1080/1612197x.2022.2057570
  16. Gray, R. (2017). Transfer of training from virtual to real baseball batting. Frontiers in Psychology, 2183. https://doi.org/10.3389/fpsyg.2017.02183
  17. Harrison, K., Potts, E., King, A. C., & Braun-Trocchio, R. (2021). The effectiveness of virtual reality on anxiety and performance in female soccer players. Sports, 9(12), 167. https://doi.org/10.3390/sports9120167
  18. Hall, C. R., Mack, D. E., Paivio, A., & Hausenblas, H. A. (1998). Imagery use by athletes: Development of the Sport Imagery Questionnaire. International Journal of Sport Psychology, 29(1), 73–89.
  19. Holmes, P. S. & Collins, D. J. (2001). The PETTLEP approach to motor imagery: A functional equivalence model for sport psychologists. Journal of Applied Sport Psychology, 13(1), 60-83. doi:10.1080/104132001753155958
  20. Hyllegard, R. (1991). The role of the baseball seam pattern in pitch recognition. Journal of Sport and Exercise Psychology, 13(1), pp.80-84. https://doi.org/10.1123/jsep.13.1.80
  21. Huck, S. W. (2014). Reading statistics and research (7th ed.). Pearson Education Limited.
  22. Lawrence Erlbaum Associates. https://doi.org/10.2307/2290095
  23. Jeannerod, M. (1981) Intersegmental coordination during reaching at natural visual objects. Attention and performance IX, ed. Long, J. & Baddeley, A., & Erlbaum.
  24. Jones, L., & Stuth, G. (1997). The uses of mental imagery in athletics: An overview. Applied and Preventive Psychology, 6(2), 101–115. doi: 10.1016/s0962-1849(05)80016-2
  25. Kehoe, R. & Rice, M. (2016). Reality, virtual reality, and imagery: Quality of movement in novice dart players. British Journal of Occupational Therapy, 79(4), pp.244-251. https://doi.org/10.1177/0308022615616820
  26. Lee, H., Chung, S., & Lee, W. (2012). Presence in virtual golf simulators: The effects of presence on perceived enjoyment, perceived value, and behavioral intention. New Media & Society, 15(6), pp.930-946. https://doi.org/10.1177/1461444812464033
  27. Malachi, E.G., Tunggara, R., Cahyadi, Y., Meiliana, Fajar. M. (2023). A systematic literature review of virtual reality implementation in sports. International Conference on Artificial Intelligence in Information and Communication (ICAIIC) Conference Program. doi 10.1109/ICAIIC57133.2023.10067095
  28. Murray, E., Neumann, D., Moffitt, R. and Thomas, P. (2016). The effects of the presence of others during a rowing exercise in a virtual reality environment. Psychology of Sport and Exercise, 22, pp.328-336.
  29. Neumann, D. L., Moffitt, R. L., Thomas, P. R., Loveday, K., Watling, D. P., Lombard, C. L., Antonova, S., & Tremeer, M. A. (2018). A systematic review of the application of interactive virtual reality to sport. Virtual Reality, 22(3), 183-198.
  30. Nordin, S. M., & Cumming, J. (2008). Types and functions of athletes’ imagery: Testing predictions from the applied model of imagery use by examining effectiveness. International Journal of Sport and Exercise Psychology, 6(2), 189-206. doi:10.1080/1612197x.2008.9671861
  31. Ranganathan, R. & Carlton, L. (2007). Perception-action coupling and anticipatory performance in baseball batting. Journal of Motor Behavior, 39(5), pp.369-380.doi: 10.3200/JMBR.39.5.369-380.
  32. Richlan, F., M Weiß, M., Kastner, P., & Braid, J. (2022). Virtual training, real effects: A systematic literature review on sports performance enhancement through interventions in virtual reality. PsyArXiv. psyarxiv.com. doi.org/10.31234/osf.io/ckgm2
  33. Ross-Stewart, L., Price, J., Jackson, D., & Hawkins, C. (2018). A preliminary investigation into the use of an imagery assisted virtual reality intervention in sport. Journal of Sports Science, 6(1).
  34. Ross-Stewart, L & Lee, R. (2023). VR training and imagery training in esports. Journal of Imagery Research in Sport and Physical Activity, 18. doi.org/10.1515/jirspa-2023-0003
  35. Sai Raam, S. V., Santhosh Gopi, S., Santhosh, K., Aravind Subramanian, N., & Babiyon Clement, A. (2022). A preliminary investigation on sports-based VR technology with the influence of psychological skill training. International Journal of Creative Research Thought, 10, 7.
  36. Sherwin, J., Muraskin, J., & Sajda, P. (2012). You can’t think and hit at the same time: Neural correlates of baseball pitch classification. Frontiers in Neuroscience, 6. doi: 10.3389/fins.2012.00177
  37. Smith, D., Wright, C., Allsopp, A., & Westhead, H. (2007). It’s all in the mind: PETTLEP-based imagery and sports performance. Journal of Applied Sport Psychology, 19(1), 80-92. doi:10.1080/10413200600944132
  38. Sohail, Z., Firdos, A., Ikram, S., & Talha, M. (2022). The impact of virtual reality and augmented reality on sport psychology. Revista de Psicología del Deporte (Journal of Sport Psychology), 31(1), 217-226. Retrieved from https://www.rpd-online.com/index.php/rpd/article/view/667
  39. Steuer, J. (1992). Defining virtual reality: Dimensions determining telepresence. Journal of Communication, 42(4), 73-93. doi:10.1111/j.1460-2466.1992.tb00812.x
  40. Thomas, P.R. Murphy, S.M., & Hardy, L. (1999) Test of performance strategies: Development and preliminary validation of a comprehensive measure of athletes’ psychological skills, Journal of Sports Sciences, 17, 697 -711. doi: 10.1080/026404199365560
  41. Wakefield, C., & Smith, D. (2012). Perfecting practice: Applying the PETTLEP model of motor imagery. Journal of Sport Psychology in Action, 3(1), 1-11. doi:10.1080/21520704.2011.639853
  42. Wang, J. (2012). Research on application of virtual reality technology in competitive sports. Procedia Engineering, 29, pp.3659-3662.
  43. Williams, S. E., Cooley, S. J., Newell, E., Weibull, F., & Cumming, J. (2013). Seeing the difference: Developing effective imagery scripts for athletes. Journal of Sport Psychology in Action, 4(2), 109–121. doi: 10.1080/21520704.2013.781560
  44. Williams, S. E., & Cumming, J. (2014). Sport imagery ability questionnaire. ResearchGate. doi:10.13140/RG.2.1.1608.6565
  45. Wood, G., Wright, D. J., Harris, D., Pal, A., Franklin, Z. C., & Vine, S. J. (2021). Testing the construct validity of a soccer-specific virtual reality simulator using novice, academy, and professional soccer players. Virtual Reality, 25(1), 43-51. doi.org/10.1007/s10055-020-00441
  46. White, A. & Hardy, L. (1998). An in-depth analysis of the uses of imagery by high-level slalom canoeists and artistic gymnasts. The Sport Psychologist, 12(4), 387–403. doi.org/10.1123/tsp.12.4.387
  47. Wu Y, Lukosch S, Lukosch H, Lindeman RW, McKee RD, Fukuden S, Ross C and Collins D (2023), Training mental imagery skills of elite athletes in virtual reality. Frontiers in Virtual Reality, 1189717. doi: 10.3389/frvir.2023.1189717
  48. Zorowitz, J. (2018, December 4). It Just Got Real. Retrieved from https://www.nbcsports.com/newsletters
2024-07-18T10:12:55-05:00August 2nd, 2024|Research, Sport Training, Sports Coaching|Comments Off on Effective use of Imagery Assisted Virtual Reality in Pitch Recognition and Sport Imagery Ability Development

Perceptions of the purpose and role of volunteer coaches in the emerging NCAA sport of women’s triathlon

Authors: 1Sean Phelps PhD.

1Colorado Mesa University, Grand Junction, Colorado, USA

Corresponding Author:
Sean Phelps
Colorado Mesa University
1100 North Avenue
Grand Junction, CO 81501-3122
970.248.1158
sphelps@coloradomesa.edu

Sean Phelps, PhD, is an assistant professor of sport management at Colorado Mesa University. His research interests include organizational theory, national governing bodies, and international sports

Perceptions of the purpose and role of volunteer coaches in the emerging NCAA sport of women’s triathlon

ABSTRACT

Purpose: While the academic research into volunteer coaches in youth sports is robust and prevalent, the same cannot be said for volunteer coaches involved in intercollegiate sports. The NCAA rules/guidelines for incorporating volunteer coaches into various sports range from the previously specific, but no longer allowed, (Division I, particularly football and basketball) to the more general (Division II and III). Using the emerging NCAA sport of women’s triathlon as the case study, this project asked the coaches of the 40 institutions presently sponsoring women’s intercollegiate triathlon about their perceptions regarding volunteer coaches.

Methods: A qualitative interpretive research approach was used to allow each respondent to make sense of their individual situation. A web based open-ended questionnaire was sent to all NCAA women’s triathlon head coaches and paid assistants and selected coaches were also interviewed (representing all three NCAA divisions).

Results: Twelve (30%) coaches responded to the survey. Results indicated that four main themes were derived from the data: gratitude, caution, acceptance, and personal traits.
Conclusions: The perceptions of existing NCAA coaches regarding volunteer coaches may become a gateway or a barrier. A volunteer coach might complement the head coach and fill in the gaps in other areas such as sport specific expertise, fundraising, and social functions. Implications of the study include that volunteering can serve as the apprenticeship before becoming a paid coach.

Application in Sport: USA Triathlon, as the National Governing Body for the sport, has a personal stake in creating highly trained, experienced, and specialized draft legal coaches for its juniors, developmental and Olympic programs. The NCAA emerging sport of women’s draft legal triathlon is one way in which to accomplish these goals.

Keywords: sport coach, college sport, National Governing Body, emerging sport

“There is nothing stronger than the heart of a volunteer.”
Jimmy Doolittle

In January 2014, the National Collegiate Athletic Association (NCAA) approved women’s triathlon as an emerging sport (36). An emerging sport must reach 40 institutions before the NCAA recognizes the sport (and then provides funding for national championships) (14). In 2022, USA Triathlon, as the National Governing Body (NGB) of the sport, reported that 40 schools had adopted women’s triathlon and that the process for full NCAA recognition could begin (T. Yount, personal communication, 8 February 2023). USA Triathlon (USAT) is the driving force behind this initiative (both politically and financially) (36). USA Triathlon has an organizational stake in this because it needs to identify triathletes who can compete on an international level and eventually contend in the Olympic Games as well as developing future high performance coaches. USAT also offers a coaching education and certification program.
Under the USA sports system, colleges and universities are often the training grounds for Olympic athletes (7). Prior to the 2014 initiative by USAT, this training ground did not exist. USAT also wanted to develop the international style of racing domestically. At the Olympic level, triathlons are draft legal, meaning during the cycle portion of the triathlon competitors are allowed to ride behind one another just like bicycle racing. This is different from a traditional non-drafting event where cyclists must be separated from one another by several meters. The NCAA draft legal format is a 750-meter swim, followed by a 20-kilometer bike and ending with a 5-kilometer run, which is the sprint distance under World Triathlon rules (59). World Triathlon is the International Federation for the sport of triathlon.


As the USA had been slow in the adoption of the draft legal format for competitors compared to other countries (38), it also is behind much of the world with triathlon coaches who have draft legal experience. So much so, that USA Triathlon started recruiting interested existing coaches in 2014 to specialize in this format of racing (55). Additionally, the NGB also is developing a mentorship program for college coaches (56). Head coaches may have come from a swimming or running background, have Ironman™ coaching certifications and/or have experience of their own as age group triathletes. Furthermore, college and university athletic departments might only want to pay for a head coach to keep overhead down until full recognition by the NCAA is obtained. Enter the volunteer coach. Volunteer coaches may allow for simple division of labor and tap into expertise or particular skill sets. They may be able to manage administrative duties such as scheduling, team uniforms and/or trouble shooting. Volunteer coaches may allow head coaches to “fill in the gaps” in terms of content expertise (i.e., swim, bike, run, organization, fundraising) as the sport works towards full NCAA recognition as well as operating under the present rules of that organization (33-35).


In November of 2021, USAT presented to the Collegiate Triathlon Coaches Association the “current state of the sport.” At that time, 70% of the institutions sponsoring women’s triathlon used at least one volunteer coach in 2021 (62). A further breakdown showed 50% of volunteer coaches assisted with the swim, 57% assisted with the bike and 47% assisted with the run. “Indicating that some volunteers help with more than one sport” (62). USAT also found that volunteer coaches also assisted “with race management, transportation, bike maintenance, physical therapy and recruiting” (62). This information provided a starting point for the project. Thus, the research question is: what are the perceptions of head coaches as to the purpose and role of volunteer coaches in the emerging NCAA sport of women’s triathlon?


College sports in the USA has long used the apprenticeship-approach to training and educating future coaches. If not a student-athlete, one becomes a manager or intern as an undergraduate, then becomes a graduate assistant, then an assistant coach and, finally, a head coach. Since triathlon is new and classified as an emerging sport, this traditional pathway does not yet formally exist. While it is a time-honored tradition to use playing experience at the beginning of a coaching career rather than specific education pertinent to coaching in general and sport specific (44), draft legal experience for existing triathlon coaches in the USA is still rare. Triathlon is not a high school sport and does not have as structured and formalized club system as USA Swimming or USA Gymnastics. The incorporation of volunteer coaches, particularly those with draft legal experience, might be one way to increase the pool of knowledgeable coaches that then possibly become available to new NCAA programs. Head coaches can be “instrumental in the career development of their head assistant coach, indirectly preparing them for future head coaching positions” (40, p. 11). Volunteering could become the apprenticeship and help train future coaches. Until more student-athletes graduate from the sport, and move into coaching through those traditional pathways, volunteer coaches may be an untapped resource.


LITERATURE REVIEW
Before proceeding, it is important to provide operational definitions of the terms volunteer and perceptions. These definitions are the operational “guardrails” for the study. Volunteers are people, who for a variety of motives, decide to donate their time and, often, their money to a particular group or cause (39). Perception is the “process of integrating, organizing, and interpreting sensations” (26, p. 80) and “…the way you think about or understand someone or something” (51).
According to the U.S. Bureau of Labor Statistics (53), about 62.6 million people volunteered between September of 2014 and September of 2015. These same statistics showed the more education one has, the more likely that person is to volunteer. Other statistics included those volunteers provided a median of 52 hours annually and those men and women volunteered at near the same rate (52 hours vs. 50 hours, respectively). Volunteers were “most likely to volunteer for religious organizations, followed by education or youth service organizations,” and those individuals who possessed a bachelor’s degree or higher “were more likely to provide professional or management assistance or to tutor or teach than volunteers with less education” (53). Volunteers can provide an economic benefit for nonprofit organizations (4) by taking on “staff-like roles to control costs” (24, p. 201). Volunteer sports coaches through their social interactions and engagement could become “community assets” (23, p. 322).


Within the academic literature, the topic of volunteering, in general, regarding motivation, meaning, sense of community, and perceptions have been significantly studied (10, 42, 43, 49, 58). Youth sports have also been extensively study: from training (15, 22, 45), education (28), motivation (3), behavior (18, 27, 31), relationships/wellbeing (25, 46, 52) and efficacy (6, 8, 16, 50). Organizations such as the National Alliance of Youth Sports, Positive Coaching Alliance, Good Sports and TrueSport focus on youth sports, youth coaches, and parents. To coach under the auspices of the US National Governing Body system, a coaching certification program is required to include SafeSport certification (54). However, for any coach at the college/university level, there may be no certification requirements. While focusing on career and job coaching, Schimdt-Lellek and Fietze (47) could just as well have been discussing intercollegiate sport coaches as “coaching…is not protected by state laws; there is no state license and no public mandate and thus no defined monopoly for this professional activity” (p.746). Thus, there is no formal governance structure mandating certain education requirements or certifications to become a college coach.


Finally, research focused on assistant coaches is also scarce and not systematic in nature (19, 20). Rathwell et al. (40) looked at the perceptions Canadian university head football coaches had when hiring assistant coaches. Their findings showed that head coaches hired “loyal assistants who possessed extensive football knowledge that complimented their own skill sets” (p. 5). Additionally, they also discovered that head coaches looked at the experience an assistant coach had both as an athlete and as an assistant coach. These head coaches also wanted assistant coaches who “cared about their athletes’ personal growth and development” (p. 12). This finding echoes previous research regarding university head coaches (5, 12, 57).


METHOD
This project is a basic interpretative qualitative study (32) in that the researcher is “interested in understanding how participants make meaning of a situation or phenomenon, this meaning is mediated through the researcher as instrument, the strategy is inductive, and the outcome is descriptive” (p. 6). The project is designed to “hear the voices of the people, analyse the themes and present a thoughtful overview of the results…[it] describes and interprets, but has no theoretical underpinnings” (48, p. 5). It is also interpretive in nature because it is:
shaped by human experiences and social contexts (ontology), and is therefore best studied within its socio-historic context by reconciling the subjective interpretations of its various participants (epistemology). Because interpretive researchers view social reality as being embedded within and impossible to abstract from their social settings, they “interpret” the reality though a “sense-making” process rather than a hypothesis testing process. (41) This differs from a traditional positivist approach where theories are evaluated and verified, incorporating closed-ended questions using pre-determined approaches and involving some sort of statistical analysis (1).

Using a case study format allows for “an empirical method that investigates a contemporary phenomenon (the ‘case’) in depth and within its real-life context” (61, p. 15). A case study is a research technique “used in sport management to examine (e.g., observe, explore) certain factors of a sport industry subject (e.g., event, person, group, company, organization, system) for a certain time period” (1, p. 139). Simply put, the technique allows for a detailed analysis of a specific activity, situation, or practice (1). The case is NCAA women’s triathlon coaches’ perceptions of the purpose of volunteer coaches.


USA Triathlon has a list on its website of all the NCAA schools presently competing in women’s triathlon as an emerging sport. Each of those institutions has an athletic department website that has triathlon information available in the public domain. Additionally, the Collegiate Triathlon Coaches Association also has a list of all head coaches from these institutions as well as the assistant coaches (paid and volunteer). These two sources comprise the study’s participants. Purposive sampling is the selected technique.


A web based Qualtrics™ survey with some demographic and background questions as well as 13 open-ended questions was emailed to all subjects within the specified sample. A provisional list of 25 open-ended questions were developed by the researcher based on a review of the existing literature within youth sports and input from a representative from USA Triathlon. Questions were then reviewed by two different academics at two different institutions; one responsible for a coaching minor (and a former NCAA coach) and the other responsible for a coaching major (and involved with youth sports). The original list of 25 was reduced to 15 and then two of the questions were combined to create the final 13 questions used in the questionnaire (see Appendix A). The use of open-ended questions allows “the researcher to understand and capture the points of views of others without predetermining those points of view through prior selection of questionnaire categories” (37, p. 21).


After approval from the university’s IRB (Protocol 23-12), an email invitation to complete the qualitative survey was sent by the researcher to all NCAA triathlon coaches that included a link to the web based survey. Informed consent was presented and obtained at the beginning of the survey. Also included in the invitation was information regarding follow-up phone/video interviews. Interested respondents were invited to a phone or internet conferencing (i.e., Zoom, Teams, Skype) interview. Zoom offers an auto-transcription feature that expedites data review. Those respondents who expressed interest in participating in an interview included their email address with their submission of the survey. Additionally, USAT sent out a prompt to the coaches promoting the study. A representative from USAT who is involved with their NCAA women’s triathlon initiative was also invited to participate in the interview.


The interview followed a list of semi-structured questions derived from the original survey to allow for the interviewee to expand upon their thoughts regarding the survey (see Appendix B). A division designation replaced each respondent’s name to maintain anonymity and confidentiality (i.e., DIa, DIIa, DIIIa, NGB). A reminder email was sent six weeks after the initial invitation to the intercollegiate triathlon coaching population to increase the participation rate. For those respondents who agreed to be interviewed, a separate informed consent form was required by the university’s Internal Review Board. This form was signed by the participant and returned to the author.


Results from the surveys and the interviews were then coded by the author. Coding is taking the raw text and “moving you from a lower level to a higher (more abstract) level of understanding” of the data (2, p. 35). The next step is to further reduce the information to smaller pieces is identifying themes, or similarities in the text (2). Similar words and phrases categorize the same feelings/experiences (1). For example, “personality” or “approachability” might be traits a volunteer coach could have. Then the data is triangulated incorporating several types of data collection to focus on the case (21). In this instance, the use of an online survey and interviews were the two data collection methods combined with materials from USA Triathlon.


Finally, trustworthiness, credibility, and rigor (29) involving the researcher and the data must be addressed. The author has 42 years of experience in the sport of triathlon (including draft legal races as an age group athlete, both domestically and internationally), is a former triathlon race director, former NGB employee, former team manager and age group committee member of a foreign triathlon National Sports Federation, a former academic advisor and coach of a university club team, wrote the grant application for another institution that added intercollegiate triathlon, and, at the present time, is a volunteer coach of an NCAA women’s triathlon team.


RESULTS
The survey garnered a 30% response rate (12/40) and eight coaches (one DI, two DII and three DIII) agreed to respond to the interview questions in writing rather than by phone or video. One DI and one DII coach agreed to be interviewed by video. Additionally, the representative from USA Triathlon responded to the questions in writing.


Basic demographic information showed that seven women and five men completed the survey. Five of the women were between the ages of 35-44 and the other two were 45-54. The five men ranged from one in 35-44, three in 45-54, and one in 55-64. Five women hold master’s degrees, one holds a bachelor’s degree, and the other holds an associate degree. For the men, three hold a bachelor’s degree and two hold a master’s degree. Additional coaching certifications (i.e., USA Triathlon, USA Swimming, USA Cycling, USA Track and Field, SafeSport, National Federation of High Schools, or others), were held by all respondents. SafeSport certification is required by all NGBs for their respective coaching certifications. As a result, all individuals possessed this credential. Eight people hold at least the entry level USA Triathlon Level 1 coaching certification. Three hold a USA Swimming certification while two hold an American Swimming Coaches Association credential. Three hold a USA Cycling coaching certification and one also holds a USA Track and Field certification. Additional certifications include Ironman™, Road Runners Club of America™, certified strength and conditioning coach and a coaching certification in the sport of triathlon from another country. For their individual primary sport background, five women and four men indicated triathlon was their primary sport background while two women and one man indicated swimming. All seven women indicated they were the head coach of a program while four men did so. There was one male respondent who listed being a paid assistant coach. Finally, four NCAA DI schools were represented (two women, two men), four DII schools (two women, two men), and one DIII school (male). Three respondents did not indicate their institution’s NCAA participation level.


Four major themes were derived from the raw survey and interview data: gratitude, caution, acceptance, and personal traits. Gratitude was demonstrated by being thankful or appreciative for a volunteer’s assistance. The National Governing Body representative provided this explanation regarding volunteer coaches incorporating gratitude:
I speak to hundreds of administrators and the messaging from me is that I feel many of our teams are underutilizing the volunteer coach. We have some amazing options in every NCAA collegiate community. The volunteer coach cannot only assist with practices, but they are an amazing sounding board for other discussions that coaches desire at various points during a season on so many other topics. Other times they can help administratively or with recruitment. Some are [physical therapists] and can support recovery needs. Others can speak to mental health woes and ways for athletes to combat fears in many areas. The list of ways that volunteer coaches can be leveraged is unnumerable. USAT might need to do a better job of positioning coaches with NCAA programs with those we know who are reliable and ready to support our institutions through the course of a race season.


Similar positive sentiments were provided by other coaches regarding the value of volunteer coaches.
We have been fortunate to have volunteer coaches work with our athletes…and they have contributed greatly to the development and performance of our athletes. Volunteers bring an expertise to designing and overseeing some of our team training objectives. Their passion of the sport of triathlon is evident in that they are giving of their time and talents to the benefit of our team and the sport. (DIIa)
DIIb added:
Volunteer coaches are instrumental in the emerging sport initiative. Without their selfless dedication of time, I would not be able to have a program. They are just unpaid assistant coaches. They do all the same duties, helping out on a daily basis with practices, and on the road. They are imperative to the success of the program.
DIIIb felt that volunteer coaches have “the highest value, not only does it help the athletes, but allow[s] that person an opportunity to pad their resume.” DIIIa stated “volunteers play an integral role in giving out student-athletes a better college experience…they have been a help and blessing to me and my team, throughout my coaching career.” DIIIa also incorporated a volunteer coach in all areas of the team and program:


Up to including every aspect of the team. Assisting the head coach in all areas of recruiting, coaching, practice planning and execution, travel planning, traveling, running practices, etc. The more the volunteer is willing to take on, willing to work on, willing to learn, the more I am willing to give them!


DIb added that a volunteer coach also provides camaraderie and support to the head coach, especially in these early years of the sport because there may be no coaching staff compared to existing NCAA sports. Without the volunteer coach, there might just be the head coach operating alone in an athletic department. “[Your] coaching changes when you have that much help. It literally changes.” DIIc stated:
I could not have done it without the volunteer coaches. It would have been impossible [without them]…and foolish not to take advantage of [their commitment]. [Locally], I have access to a professional triathlete, a woman who is triathlete, is involved with a women’s triathlon group, and a well-respected businessperson in the community…and a faculty member with decades of experience in the sport.


DIIIa felt a sense of obligation to assist the volunteer coaches:
With every volunteer I have, I ask them what area do they want to do the most? What area would they like to learn more? What areas are they interested in most?…Then I focus on those things. My way of “paying them” for their time is to help them learn about themselves and learn skills that will help them with their next position, hopefully a paid one. My point is to train them for their next move.


One survey respondent shared this outlook:
Many volunteer coaches are looking for experience so that they can hopefully get a paying job (head or assistant coach) at a university…the head coach should support them in that and try to educate them and give them hands on experience in all aspects of collegiate coaching so that feel better prepared to take on a paid position.
Comments from the survey were more guarded and highlighted the caution theme. One coach commented on the “lack of qualified draft legal experience” as a reason for not using volunteer coaches. Other coaches restricted the duties of a volunteer coach: “help with leading workouts and travel” and “just for bike sessions or to cover a practice if both the head coach and assistant coach are away.” A few coaches assigned only duties based on a volunteer’s experience or creating social activities for the team. One coach indicated that “I would not leave travel, budget, program writing, [or] compliance to a volunteer. That needs to be done faultlessly.” Another survey respondent replied that “none as of now” regarding incorporating a volunteer coach in their program.


Expectations can be defined as what the head coach wants from a volunteer. That can be a simple as the most identified item: “know the sport.” It can also include time commitments to the program and athletes. An example of what a coach wants is “just hands on coaching” or “mostly hands on coaching” from survey respondents. Another respondent wanted a volunteer coach to specialize in a specific discipline (swim, bike, or run). DIb said, “It’s a combination of administrative and works outs…maybe 60%/40%.” DIIc added:
[The] volunteer coach serves at the discretion of the head coach….They need to support the vision, mission, and philosophy of the head coach…They need to know who we are and believe in it…Our core values are a part of everything. Everyone understands what the program is about.


Responses to the time commitment question were quite varied, ranging from 2-16 hours per week. One coached expected a “minimum of 10 hours a week” and that total would increase “based on their availability and goals as a volunteer.” Other responses were less specific with one coach replying, “just do what you say you’re going to do.”
DIIIb had higher expectations:
I would want the volunteer coaches to know about the sport of triathlon. First, they should be familiar with the amateur divisions and even better if they understand the junior elite model. Also, understanding the periodization aspect behind it will help to develop the tempo through the season. Secondly, a person with experience in swimming in [high school] and a robust running background would be the third option for a volunteer coach.
DIIIa was adamant about one expectation, an area of the program a volunteer would not be responsible for:

Basically, team discipline and athletic department meetings. [As the head coach], I am the face of the program, and I do not want there to be any misconceptions about who is in charge, who is making the decisions, and who ultimately responsible for steering the ship. Also, for a volunteer, I do not think they need to be responsible for every aspect of the team.
Adding to the “off limits” feeling, DIb revealed, “the biggest one…would be some intimate individual meetings that I have” with student-athletes. If “it’s gonna be a more intimate type of meeting, and we need to touch on some hard issues, I won’t have them sit in on those.” DIb would also not use volunteers in the recruiting process because of the turnover at that position. The head coach needs to develop that personal relationship with each recruit. DIIc stated, “[They] should not be communicating with the administration…not handling money or finances…and not be involved in any off campus recruiting.”

Personal traits were the one theme that was consistent across all respondents and interviewees. Terms such as professionalism, honesty, integrity, positivity, personality, and a willingness to learn were highlighted. One respondent stated that volunteer coaches need to be “approachable, care about the student athletes and their success” while another provided a similar comment wanting a volunteer coach to be “approachable, honest, takes time to connect with the athletes, open-minded, supports my vision and the team culture.”
Knowledge, skills, and attributes came through as a component of personal traits. DIIIa said, “Obviously, the higher the knowledge and experience in the sport, the better…I do not expect them to have the greatest experience or knowledge in the sport. But a willingness to learn and help lead our student-athletes in a positive way.”
Experience was emphasized by all those completing the survey. Comments such as “experience and personality are key” and “experience and understanding draft legal” are reflective of this feeling. One coach went more in-depth regarding expectations on experience: “Experience coaching swimming, biking, and/or running at any level; having at least participated in a triathlon; preferably already USAT certified but would like them to have some sort of coaching certification (swimming, biking, running).”

DISCUSSION
As this project was nearing completion, the NCAA DI Council adopted the recommendations of the NCAA DI Transformation Committee to eliminate the voluntary coach designation across all sports (11). DII and DIII programs can still incorporate volunteer coaches according to information disseminated by USA Triathlon (T. Yount, personal communication, 8 February 2023), but the coach representing institution DIIIc indicated that school is not allowing volunteer coaches; “they must be paid.”

DIa felt:
I do believe volunteer coaches could add great deal of value to a program. Volunteer coaches can add another set of eyes and insight into your team and specific athletes. All coaches have their own way of communicating with athletes. Sometimes when an athlete hears something in a new way it might click…Unfortunately…the use of volunteer coaches [is not]…permitted in the NCAA.

DIb replied:
The volunteer [coach] was a little more challenging because they are a volunteer, and they’re doing for a specific reason, and you’re trying to give them what they are there to learn, but you need them in other ways. [Volunteers are] a little more challenging than when they are paid, because when they are paid you can be more like “these are the things I want done.”…it is a bit challenging trying to manage what they really should do that’s benefitting them and helping you.
This action by the DI Council may eliminate opportunities for volunteer coaches, but with the economic constraints faced by all DII and DIII schools, chances are these institutions may appreciate the assistance. The statements made by DII and DIII coaches provide a welcoming and accepting attitude towards volunteer coaches.

LIMITATIONS
With a 30% response rate (12/40) to the survey, the challenge is to draw any meaningful conclusions from the data collected. Online surveys often have lower response rates compared to other types of surveys (9, 60). However, sample sizes of less than 500 with a response rate of 20%-25% can offer some confident approximations (17). A concerning limitation is that only two coaches chose to be interviewed directly via phone or video call. All others chose only to respond to the questions in writing. This lack of one-on-one interaction eliminated the possibility of follow-up questions and gaining immediate clarifications. An additional limitation to the study, is that not all questions were answered in the survey. No one answered the Question 15 regarding what is needed to plan, lead, organize and evaluate their program. Only half the survey respondents answered Question 17 concerning what protections/services are covered by the institution for volunteer coaches (i.e., insurance, travel, tuition waivers). Those who did respond indicated they were unsure, or that nothing was provided in this area.
Finally, there is a lack of additional member fact checking which can be perceived as a limitation. As there was only one researcher, there was no additional review of the raw data during the coding and thematic analysis. The interpretation of the data is based on only one person’s review. However, “interpretation means attaching significance to what was found, making sense of findings, offering explanations, drawing conclusions, extrapolating lessons, and otherwise imposing order on an unruly but patterned world” (37, p. 480). Thus, one must default back to the trustworthiness and credibility of the author. The reader should feel comfortable that the results are “balanced, fair, and conscientious in taking account of multiple perspectives, multiple interests, and multiple realities” (37, p. 575).


CONCLUSION
As the National Governing Body for the sport of triathlon, USA Triathlon has a professional stake in both developing future world class triathletes and future national team coaches. Creating highly trained, experienced, and specialized draft legal coaches also impacts the junior and developmental ranks for the NGB. The NCAA emerging sport of women’s draft legal triathlon is one way in which to accomplish these goals. In addition to “the effort is part of a larger strategic initiative by the NCAA to grow female participation through its Emerging Sports for Women program” (30). The inclusion of draft legal triathlon also provides additional opportunities for female student-athletes which may help institutions with Title IX concerns.
The perceptions of existing NCAA coaches regarding these volunteer coaches, therefore, become a gateway or a barrier. Thus, NCAA DII and DIII “programs need to provide infrastructures that foster and support effective volunteering” (24, p. 199). Part of that infrastructure is defining the role of a volunteer coach and providing training as well as protections such as liability insurance (13). Future research could focus on USA Triathlon’s increased involvement in educating and training coaches in draft legal racing as well as developing a post-graduate pathway for women to transition from student-athlete to coach. Additionally, what is not addressed in this project deliberately, are the motivations of volunteer coaches in the sport of NCAA women’s draft legal triathlon. That is a question for future research and as part of the larger research question about volunteer coaches in other NCAA sports.


REFERENCES

  1. Andrew, D.P.S., Pedersen, P.M., & McEvoy, C.D. (2020). Research methods and design in sport management (2nd ed.). Champaign, IL: Human Kinetics.
  2. Auerbach, C.F., & Silverstein, L.B. (2003). Qualitative data. New York, NY: New York University Press.
  3. Bouchet, A., & Lehe, A. (2010). Volunteer coaches in youth sports organizations: Their values, motivations & how to recruit, & retain. YouthFirst: The Journal of Youth Sports, 5(1), 21-24.
  4. Bowman, W. (2009). The economic value of volunteers to nonprofit organizations. Nonprofit Management & Leadership, 19(4), 491-505. doi.org/10.1002/nml.233
  5. Carter, A.D., & Bloom, G.A. (2009). Coaching knowledge and success: Going beyond athletic experience. Journal of Sport Behavior, 32(4), 419-437.
  6. Cohen, A.J., Bovbjerg, V., & Wegis, H. (2020). Does coaching experience and coaching efficacy of untrained volunteer youth sport coaches influence children’s moderate-to-vigorous physical activity? International Journal of Sport Science, 15(2), 135-145. doi.org/10.1177/17479541209066
  7. Collegiate Partnerships. (2022). About the US Olympic and Paralympic committee. Retrieved from USOPC website: https://www.teamusa.org/about-the-usopc/collegiate-partnerships
  8. Coté, J., & Gilbert, W.D. (2009). An integrative definition of coaching effectiveness and expertise. International Journal of Sports Science & Coaching, 4(3), 307-323. doi.org/10.1260/17479540978962
  9. Daikeler, J., Bošnjak, M., Manfreda, K. L. (2019). Web versus other survey modes: An updated and extended meta-analysis comparing response rates. Journal of Survey Statistics and Methodology, 8(3), 513-539. doi:10.1093/jssam/smz008
  10. Dickson, G., Hallman, K., & Phelps, S. (2017). Antecedents of a sport’s volunteer sense of community. International Journal of Sport Management and Marking, 17(1/2), 71-93. doi:10.1504/IJSMM.2017.083983
  11. Durham, M. (2023, January 11). NCAA Division I council modernizes rules for coaching limits. Retrieved from the NCAA website: https://www.ncaa.com/news/ncaa/article/2023-01-11/ncaa-division-i-council-modernizes-rules-coaching-limits
  12. Duchesne, C., Bloom, G., & Sabiston, C. (2011). Intercollegiate coaches’ experiences with elite international athletes in an American sport context. International Journal of Coaching Science, 5(2), 49-68.
  13. Einolf, C. (2018). Evidence-based volunteer management: A review of the literature. Volunteer Sector Review, 9(2), 153-176. doi:10.1332/204080518X15299334470348
  14. Emerging Sports for Women. (2022). NCAA. Retrieved from the NCAA website: https://www.ncaa.org/sports/2016/3/2/emerging-sports-for-women.aspx
  15. Falcã, W.R., Bloom, G.A., & Gilbert, W.D. (2012). Coaches’ perceptions of a coach training program designed to promote youth developmental outcomes. Journal of Applied Sport Psychology, 24(4), 429-444. doi:10.1080/10413200.2012.692452
  16. Feltz, D. L., Hepier, T.J., Roman, N., & Paiement, C. (2009). Coaching efficacy and volunteer sport coaches. The Sport Psychologist, 23(1), 24-41. doi:10.1123/tsp.23.1.24
  17. Fosnacht, R., Sarraf, S., Howe, E., & Peck, L.K. (2017). How important are high response rates for college surveys? The Review of Higher Education, 40(2), 245-265. doi:10.1353/rhe.2017.0003
  18. Giannousi, M., Mountaki, F., Karamousalidis, G., Bebetsos, G., & Kioumourtzoglu, E. (2016). Coaching behaviors and the type of feedback they provided to young volleyball athletes. Journal of Physical Education and Sport, 16(4), 1372-1380. doi:10.7752/jpes.2016.04219
  19. Gilbert, W.D., Rangeon, S., & Bruner, M. (2012). Mapping the world of coaching science: A citation network analysis. Journal of Coaching Education, 5(1), 83-113. doi:10.1123/jce.5.1.83
  20. Gilbert, W.D., & Trudel, P. (2008). Analysis of coaching science research published from 1970-2001. Research Quarterly for Exercise & Sport, 75(4), 388-399. doi.org/10.1080/02701367.2004.10609172
  21. Gratton, C., & Jones, I. (2010). Research methods for sports studies (2nd ed.). New York: Routledge.
  22. Griffiths, M., & Armour, K. (2013). Volunteer sport coaches and their learning dispositions in coach education. International Journal of Sports Science & Coaching, 6(4), 677-688. doi.org/10.1260/1747-9541.8.4.
  23. Griffiths, M., & Armour, K. (2014). Volunteer sports coaches as community assets? A realist view of the research evidence. International Journal f Sport Policy and Politics, 6(3), 307-326. doi:10.1080/19406940.2013.824496
  24. Grossman, J.B., & Furano, K. (1999). Making the most of volunteers. Law and Contemporary Problems, 62(4), 199-218. doi.org/10.2307/1192273
  25. Harmon, A., & Doherty, A. (2014). The psychological contract of volunteer youth sport coaches. Journal of Sport Management, 28(6), 687-699. doi:10.1123/jsm.2013-0146
  26. Hockenbury, S.E., & Nolan, S. (2018). Psychology (8th ed.) [Macmillan Learning]. Retrieved from Macmillan Learning website: https://www.macmillanlearning.com/college/us/product/Psychology/p/1319050638
  27. Lawrason, S., Turnnidge, J., Martin, L.J., & Côté, J. (2019). A transformational coaching workshop for changing youth sport coaches’ behaviors: A pilot intervention study. The Sport Psychologist, 33(4), 304-312. doi:10.1123/tsp.2018-0172
  28. Lemyre, F., Trudel, P., & Durand-Bush, N. (2007). How youth-sport coaches learn to coach. The Sport Psychologist, 21(2), 191-209. doi:10.1123/tsp.21.2.191
  29. Lincoln, Y.S., & Guba, E.G. (1986). “But is it rigorous?” Trustworthiness and authenticity in naturalistic evaluation. New Directions for Program Evaluation, 30, 73-84. doi.org/10.1002/ev.1427
  30. Maconi, C. (13 July 2017). NCAA triathlon: A bright future. Retrieved from USA Triathlon website: https://www.teamusa.org/USA-Triathlon/News/Articles-and-Releases/2017/July/13/NCAA-Triathlon-A-Bright-Future
  31. Martin, N.J. (2014). Keeping it fun in youth sport: What coaches should know and do. Strategies, 27(5), 27-32. doi.org/10.1080/08924562.2014.938879
  32. Merriam, S. B., & Tisdell, E.J. (2016). What is qualitative research? Qualitative research: A guide to design and implementation. (4th ed.) (pp. 3-21). San Francisco, CA: Jossey-Bass.
  33. NCAA. (2022a, August). NCAA 2022-23 Division I Manual. Retrieved from USAT Triathlon website: https://web3.ncaa.org/lsdbi/reports/getReport/90008
  34. NCAA. (2022b, August). NCAA 2022-23 Division II Manual. Retrieved from USAT Triathlon website: https://web3.ncaa.org/lsdbi/reports/getReport/90010
  35. NCAA. (2022c, August). NCAA 2022-23 Division III Manual. Retrieved from USAT Triathlon website: https://web3.ncaa.org/lsdbi/reports/getReport/90011
  36. NCAA Triathlon. (2022). USA Triathlon. Retrieved from USAT Triathlon website: https://www.teamusa.org/usa-triathlon/about/multisport/ncaa-triathlon
  37. Patton, M.Q. (2002). Qualitative research & evaluation methods (3rd ed.). Thousand Oaks, CA: Sage Publications.
  38. Phelps, S. (2006). The creation and development of an International Sports Federation: A case study of the International Triathlon Union from 1989-2000. (Doctoral dissertation). Available from DigiNole website: http://purl.flvc.org/fsu/fd/FSU_migr_etd-0290
  39. Pidgeon, Jr., W.P. (1997). The universal benefits of volunteering. Hoboken, NJ: John Wiley & Sons, Inc.
  40. Rathwell, S., Bloom, G.A., & Loughead, T.M. (2014). Head coaches’ perceptions on the roles, selection, and development of the assistant coach. International Sport Coaching Journal, 1(1), 5-16. doi:10.1123/iscj.2013-0008
  41. Research Methods for the Social Sciences. (2023). Chapter 12 interpretive research. Retrieved from https://courses.lumenlearning.com/suny-hccc-research-methods/chapter/chapter-12-interpretive-research/
  42. Rodell, J.B. (2013). Finding meaning through volunteering: Why do employees volunteer and what does it mean for their jobs? Academy of Management Journal, 56(8), 1274-1294. doi.org/10.5465/amj.2012.0611
  43. Rodell, J.B., & Lynch, J.W. (2016). Perceptions of employee volunteering: Is it “credited” or “stigmatized” by colleagues? Academy of Management Journal, 59(2), 611-635. doi.org/10.5465/amj.2013.0566
  44. Rushall, B.S. (2003). Coaching development and the Second Law of Thermodynamics (or the belief-based versus evidence-based coaching development). Coaching Science Bulletin, 9(2). Retrieved from Coaching Science Bulleting website: https://coachsci.sdsu.edu/csa/thermo/thermo.htm
  45. Santos, S., Mesquita, I., Graça, & Rosado. A. (2010). Coaches’ perceptions of competence and acknowledgement of training needs related to professional competencies. Journal of Sports Science and Medicine, 9(1), 62-70.
  46. Scales, P.C. (2016). The crucial coaching relationship. Phi Delta Kappan, 97(8), 19-23. doi.org/10.1177/0031721716647
  47. Schmidt-Lellek, C., & Fietze, B. (2022). Professionalization in coaching. In S. Greif, H. Möller, W. Scholl, & F. Műller (Eds.), International Handbook of Evidence-Based Coaching: Theory, Research and Practice (pp. 745-754). (H. Schlüsselkonzepte, Trans). Berlin, Germany: Springer Berlin Heidelberg.
  48. Smythe, L. (2012). Discerning which qualitative approach works best. New Zealand College of Midwives, 46, 5-12.
  49. Steimel, S. (2018). Skills-based volunteering as both work and not work: A tension-centered examination of constructions of “volunteer.” Voluntas, 29, 133-143. doi:10.1007/s11266-017-9859-8
  50. Sullivan, P., Paquette, K.J., Holt, N.L., & Bloom, G.A. (2012). The relation of coaching context and coaching education to coaching efficacy and perceived behaviors in youth sport. The Sports Psychologist, 26(1), 122-134. doi:10.1123/tsp.26.1.122
  51. The Britannica Dictionary. (2022). Perception. Retrieved from Britannica Dictionary website: https://www.britannica.com/dictionary/perception
  52. Trudel, P., & Gilbert, W.D. (2006). Coaching and coach education. In D. Kirk, M. O’Sullivan, & D. McDonald (Eds.). Handbook of Research in Physical Education (pp. 516-539). London, England: Sage.
  53. U.S. Bureau of Labor Statistics (25 February 2015). Volunteering in the United States, 2015. Retrieved from U.S. Bureau of Labor Statistics website: https://www.bls.gov/news.release/volun.nr0.htm#
  54. U.S. Center for SafeSport. (n.d.). Services for U.S. Olympic and Paralympic Committee. Retrieved from U.S. Center for SafeSport website: https://uscenterforsafesport.org/ngb-services/#
  55. USA Triathlon. (25 August 2014). USA Triathlon seeking draft legal coaches. Retrieved from USA Triathlon website: https://www.teamusa.org/USA-Triathlon/News/Articles-and-Releases/2014/August/25/082514-Draft-Legal-Coaches
  56. USA Triathlon. (n.d.) USA Triathlon coaching mentorship programs. Retrieved from USA Triathlon website: https://www.teamusa.org/USA-Triathlon/USAT-for-Me/Coaching/Coach-Mentorship-Programs
  57. Vallée, C.N., & Bloom, G.A. (2005). Building a successful university program: Key and common elements of expert coaches. Journal of Applied Sport Psychology, 17(3), 179-196. doi:10.1080/10413200591010021
  58. Wardell, F., Lishman, J., & Whalley, L.J. (2000). Who volunteers? British Journal of Social Work, 30(2), 227-248. doi.org/10.1093/bjsw/30.2.227
  59. World Triathlon 2023 Rules. (2022, November). Appendix A: Competition distances and age requirements. Retrieved from World Triathlon website: https://www.triathlon.org/uploads/docs/World-Triathlon_Competition-Rules_2023_20230208.pdf
  60. Wu, J-M, Zhao, K., & Fils-Aime, F. (2022). Response rates of online surveys in published research: A meta-analysis. Computers in Human Behavior Reports, 7, 1-11. doi.org/10.1016/j.chbr.2022.100206
  61. Yin, R.K. (2018). Case study research design and methods (6th Ed.). Thousand Oaks, CA: Sage Publications.
  62. Yount, T. (2021). NCAA educational series: Current state of the women’s collegiate triathlon. Retrieved from USA Triathlon website: www.triathlonlearning.com/coures/november-2021-ncaa-educational-series

APPENDIX A
Qualtrics survey questions

  1. Gender
  2. Age
  3. Education
  4. Please list your present coaching certifications (i.e., USA Triathlon, USA Swimming, SafeSport)
  5. Primary Sport Background
  6. Your Primary Role
  7. What NCAA Division is your program?
  8. Please answer this question if you do not presently incorporate volunteer coaches into your program. All others please go to Question #9.
    What reasons exist for not using volunteer coaches?
  9. As the head coach (or as a paid assistant), what are your expectations for volunteer coaches?
  10. What are the requirements (if any) and expectations of the institution has for volunteer coaches (i.e., NCAA certification, 1st Aid/CPR/AED, Police/FBI Background Check, SafeSport)?
  11. How do you recruit volunteer coaches?
  12. How do you incorporate volunteer coaches in your program (i.e., leading practices, travel arrangements, PR)?
  13. What is the hourly / weekly commitment expected from the volunteer coach?
  14. What qualifications do you feel are critical to the success of a volunteer coach?
  15. What do you need to plan, lead, organize and evaluate your program?
  16. Where do you need assistance with your program?
  17. What protections are covered by the institution (i.e., insurance)?
  18. What can a volunteer coach receive from the institution and still be considered volunteer (i.e., stipend, travel allowance, team attire)?
  19. What duties are you planning to assign the volunteer coach? Administrative? Hands on coaching? Program writing?
  20. How might the volunteer coach have a part to play in the succession planning around the program?
  21. If there is anything else you would like to add, please feel free to do so here. We thank you for your participation.  

APPENDIX A
Qualtrics survey questions

  1. Gender
  2. Age
  3. Education
  4. Please list your present coaching certifications (i.e., USA Triathlon, USA Swimming, SafeSport)
  5. Primary Sport Background
  6. Your Primary Role
  7. What NCAA Division is your program?
  8. Please answer this question if you do not presently incorporate volunteer coaches into your program. All others please go to Question #9.
    What reasons exist for not using volunteer coaches?
  9. As the head coach (or as a paid assistant), what are your expectations for volunteer coaches?
  10. What are the requirements (if any) and expectations of the institution has for volunteer coaches (i.e., NCAA certification, 1st Aid/CPR/AED, Police/FBI Background Check, SafeSport)?
  11. How do you recruit volunteer coaches?
  12. How do you incorporate volunteer coaches in your program (i.e., leading practices, travel arrangements, PR)?
  13. What is the hourly / weekly commitment expected from the volunteer coach?
  14. What qualifications do you feel are critical to the success of a volunteer coach?
  15. What do you need to plan, lead, organize and evaluate your program?
  16. Where do you need assistance with your program?
  17. What protections are covered by the institution (i.e., insurance)?
  18. What can a volunteer coach receive from the institution and still be considered volunteer (i.e., stipend, travel allowance, team attire)?
  19. What duties are you planning to assign the volunteer coach? Administrative? Hands on coaching? Program writing?
  20. How might the volunteer coach have a part to play in the succession planning around the program?
  21. If there is anything else you would like to add, please feel free to do so here. We thank you for your participation.  

APPENDIX A
Qualtrics survey questions

  1. Gender
  2. Age
  3. Education
  4. Please list your present coaching certifications (i.e., USA Triathlon, USA Swimming, SafeSport)
  5. Primary Sport Background
  6. Your Primary Role
  7. What NCAA Division is your program?
  8. Please answer this question if you do not presently incorporate volunteer coaches into your program. All others please go to Question #9.
    What reasons exist for not using volunteer coaches?
  9. As the head coach (or as a paid assistant), what are your expectations for volunteer coaches?
  10. What are the requirements (if any) and expectations of the institution has for volunteer coaches (i.e., NCAA certification, 1st Aid/CPR/AED, Police/FBI Background Check, SafeSport)?
  11. How do you recruit volunteer coaches?
  12. How do you incorporate volunteer coaches in your program (i.e., leading practices, travel arrangements, PR)?
  13. What is the hourly / weekly commitment expected from the volunteer coach?
  14. What qualifications do you feel are critical to the success of a volunteer coach?
  15. What do you need to plan, lead, organize and evaluate your program?
  16. Where do you need assistance with your program?
  17. What protections are covered by the institution (i.e., insurance)?
  18. What can a volunteer coach receive from the institution and still be considered volunteer (i.e., stipend, travel allowance, team attire)?
  19. What duties are you planning to assign the volunteer coach? Administrative? Hands on coaching? Program writing?
  20. How might the volunteer coach have a part to play in the succession planning around the program?
  21. If there is anything else you would like to add, please feel free to do so here. We thank you for your participation.  

APPENDIX A

Qualtrics survey questions

  1. Gender
  2. Age
  3. Education
  4. Please list your present coaching certifications (i.e., USA Triathlon, USA Swimming, SafeSport)  
  5. Primary Sport Background
  6. Your Primary Role
  7. What NCAA Division is your program? 
  8. Please answer this question if you do not presently incorporate volunteer coaches into your program. All others please go to Question #9.
    What reasons exist for not using volunteer coaches?  
  9. As the head coach (or as a paid assistant), what are your expectations for volunteer coaches?
  10. What are the requirements (if any) and expectations of the institution has for volunteer coaches (i.e., NCAA certification, 1st Aid/CPR/AED, Police/FBI Background Check, SafeSport)?  
  11. How do you recruit volunteer coaches?
  12. How do you incorporate volunteer coaches in your program (i.e., leading practices, travel arrangements, PR)?
  13. What is the hourly / weekly commitment expected from the volunteer coach? 
  14. What qualifications do you feel are critical to the success of a volunteer coach?
  15. What do you need to plan, lead, organize and evaluate your program? 
  16. Where do you need assistance with your program? 
  17. What protections are covered by the institution (i.e., insurance)? 
  18. What can a volunteer coach receive from the institution and still be considered volunteer (i.e., stipend, travel allowance, team attire)? 
  19. What duties are you planning to assign the volunteer coach? Administrative?  Hands on coaching?  Program writing?
  20. How might the volunteer coach have a part to play in the succession planning around the program?
  21. If there is anything else you would like to add, please feel free to do so here. We thank you for your participation.

APPENDIX B

Semi-structured interview questions

  1. In general, what are your overall perceptions of the role(s) that volunteer coaches play in your program?
  2. What specific knowledge, skills and attributes do you want your volunteer coaches to possess?
  3. What areas do volunteer coaches cover in your program (i.e., writing workouts, supervising practices, fundraising)?
  4. What areas do you not allow volunteer coaches in your program to be involved with?
  5. What value do you place on having volunteer coaches?
  6. How do you incorporate your volunteer coaches into the overall team culture?
  7. Is there anything else you would like to add?


2024-07-18T10:40:06-05:00July 19th, 2024|Sports Coaching|Comments Off on Perceptions of the purpose and role of volunteer coaches in the emerging NCAA sport of women’s triathlon

Coaches’ Perspectives of the Influence of Safe Sport-Related Education

Authors: Anthony Battaglia1, Ph.D., Gretchen Kerr2, Ph.D., and Stephanie Buono2, Ph.D.

Corresponding Author:

Anthony Battaglia, Ph.D., CMPC 

Faculty of Kinesiology and Physical Education 

University of Toronto 

55 Harbord Street, ON, Canada, M5S 2W6 

Email: anthony.battaglia@mail.utoronto.ca 

Anthony Battaglia, Ph.D., CMPC is a Postdoctoral Fellow and lecturer in the Faculty of Kinesiology & Physical Education at the University of Toronto. His research interests focus on youth athletes’ sport experiences, relational dynamics in sport, athlete maltreatment, and strategies for advancing developmentally appropriate and safe sport.  

Gretchen Kerr, Ph.D. is a Full Professor and Dean of the Faculty of Kinesiology and Physical Education at the University of Toronto. She is also a co-Director of E-Alliance, the Canadian Gender Equity in Sport Research Hub.

Stephanie Buono, Ph.D. is a research associate in the Faculty of Kinesiology & Physical Education at the University of Toronto and an instructor in the Department of Applied Psychology & Human Development at the University of Toronto.

Coaches’ Perspectives of the Influence of Safe Sport-Related Education 

ABSTRACT

To combat growing concerns of sport being unsafe for athletes, compulsory safe sport education has been developed worldwide. Much of this education has focused on the role of the coach, largely due to their position of power, prevalence rates that highlight coaches as common perpetrators of harm, and their direct contact with athletes. However, there is a lack of research examining the impact of such education for coaching-related outcomes. The purpose of this study was to explore the influences of safe sport training on coaches’ knowledge and confidence, efficacy to support others, stress about athlete well-being, and stress related to safe sport issues. In an online survey, 1365 coaches reported completion of any of 12 possible safe sport training courses and their knowledge and confidence, efficacy to support others, stress about athlete well-being, and stress related to safe sport issues. Regression analyses indicated that completing any of the 12 safe sport-related training courses was related to perceived increased efficacy to support others. Completing a higher number of safe sport training courses was related to perceived increases in efficacy to support others and knowledge and confidence, but not stress related to safe sport or athlete well-being. All 12 courses were related to increased knowledge and confidence, and several courses were related to increased efficacy to support others and reduced safe sport stress, while one course was related to reduced stress about athlete-well-being. Future research is needed to examine whether improvements in coaching outcomes associated with safe sport training translate into practice.

Key Words: Safe Sport; Coaches; Education; Coaching Outcomes;

Over the last several years, numerous reports of concerning behaviors in sport, such as maltreatment have emerged worldwide (15, 25). Maltreatment, which refers to “volitional acts that result in or have the potential to result in physical injuries and/or psychological harm” (12, p. 3), which include psychological, sexual, physical abuse, and neglect, harassment, bullying, and discrimination. To combat such concerns, policies and educational initiatives have been developed and implemented under the term ‘safe sport’ (26). The term safe sport initially emerged in response to scandals involving sexual abuse but has since expanded to refer to participation in sport free from all forms of violence, abuse, discrimination, and harassment (21, 39). More recently, broader conceptualizations of safe sport have also considered issues of environmental and physical safety (e.g., dysfunctional equipment, performance enhancing drugs), and the optimization of the sport experience (i.e., inclusive, accessible, growth-enhancing, and rights-based participation for all) (18). To advance safe sport, compulsory education has been developed; examples of existing safe sport education programmes include Australia’s Play by the Rules, U.S. Center for SafeSport Training, and the UK’s Child Protection in Sport Unit (24, 26).

Although safe sport education is needed for all sport stakeholders, including athletes, coaches, parents, administrators, officials and support staff, to-date, education has focused largely on coach-athlete dynamics, addressing issues such as harmful coaching practices, power relations, and duty to report harm (24, 26). There is a strong rationale for safe sport training focused on coaches. Consistent across many bodies of research in sport is acknowledgement of the presence and effects of the position of power and authority held by coaches over stakeholders in the sport ecosystem, including subordinate coaches, parents, athletes, and administrators (23, 38). When used inappropriately, these positions of power leave others vulnerable to experiences of harm. For example, psychological abuse (or what some refer to as psychological violence), the most prevalent form of athlete maltreatment, is most often perpetrated by coaches (42, 45, 48). Given their direct contact with other coaches, support staff, athletes and/or teams daily, coaches also significantly impact the type of culture promoted (e.g., win-at-all-costs versus caring or athlete-centred) and the nature and quality of athletes’ experiences (32). Coaches who are provided professional development and educational opportunities regarding positive sport practices are more likely to create environments where athletes experience enjoyment, competence, meaningful relationships, learning, satisfaction, reduced anxiety, and sport maintenance (6, 16, 36).

Although growing awareness of athlete maltreatment and the role of the coach in preventing these experiences has resulted in the proliferation of safe sport education initiatives for coaches globally, little research exists on the impact of such education for coaching-related outcomes (24, 26). In 2013, McMahon (28) investigated how a narrative pedagogical approach (i.e., athletes’ stories) might help swim coaches from amateur and elite levels understand the welfare implications for athletes subjected to emotionally or physically abusive coaching practices. Findings revealed that coaches gained increased empathy and undertook a more athlete-centered approach to coaching post-education, however, dominant cultural ideologies (e.g., winning) persisted in the coaches’ thinking and practice. Likewise, in 2018, Nurse (30) examined child sexual abuse prevention training for adults who work with children in schools, churches, and athletic leagues; with regards to coaches specifically, the training improved coaches’ knowledge on the topic and increased their confidence in their ability to identify abuse. These preliminary findings highlight the potential benefits of training for coaches; however, it is important to note that the education programmes were restricted to specific populations, sports, forms of harm, small sample sizes, and the effects of long-term behavioral change remained unclear. Further research examining the impact of safe sport training for coaches is required.

In Canada, the country of interest in this study, safe sport educational modules (e.g., NCCP Make Ethical Decisions, Safe Sport Training) (7, 9) have been developed by the Coaching Association of Canada (CAC), which is responsible for certifying and educating coaches across Canada. The CAC has also promoted safe sport standards and expectations for organizations and its coaches, including the Responsible Coaching Movement- a pledge to learn and apply consistent safety principles. The pillars of the Responsible Coaching Movement include the Rule of Two, which attempts to ensure all interactions and communications are in open, observable, and justifiable settings; background screening; and ethics training (8). In the province of Ontario, the Coaches Association of Ontario- an independent, non-profit organization that supports coaches from community level to high performance across all sports in Ontario- has adopted similar safe sport efforts and developed resources, such as Safe Sport 101 and the Ontario Coaches Conference (10). The goals of such initiatives include but are not limited to improving the knowledge of coaches with respect to safe sport, increasing their confidence in enacting desirable coaching behaviors, creating positive sport climates, and facilitating the holistic development of athletes. To-date, the extent to which these educational initiatives meet these goals for Canadian coaches has not been examined.

While safe sport education for coaches has commonly focused on enhancing knowledge of harmful or prohibited conduct, enhancing confidence in using desired behaviors, and supporting stakeholders’ (e.g., athletes, coaches, support staff) development and well-being, there remains a lack of research examining the influence of safe sport training on coaching-related outcomes (24, 26). In this study, the constructs of knowledge, confidence, efficacy, and stress were of interest. Despite recognizing their influential role, many coaches admit inadequate knowledge to cultivate safe sport environments (25); as cultivating safe sport environments is also a collective effort, it remains important that coaches feel efficacious in their ability to support all participants (31). Given the prevalence of mental health challenges in sport, coaches have expressed stress related to supporting athletes’ mental well-being (1, 3). Further, in response to the public attention paid to cases of athlete maltreatment and the focus on coaches as perpetrators of harm, coaches have reportedly felt stress about potential false accusations; specifically, concerns of negative touch have been identified in research and practice, resulting in coaches and sport personnel being fearful and unsure of how to be around athletes with whom they interact (40).

The purpose of this study therefore to explore the influences of safe sport training on Ontario coaches’ knowledge and confidence, efficacy to support others, stress about athlete well-being, and stress related to safe sport issues. Specifically, the first objective was to examine whether safe sport training improved coaches’ knowledge and confidence, efficacy to support others, stress about athlete well-being, and stress related to safe sport issues. The second objective was to examine whether the effect of safe sport training on coaches increased with the number of safe sport training courses. The third objective was to examine whether certain courses were related to coaches’ knowledge and confidence, efficacy to support others, stress about athlete well-being, and stress related to safe sport issues.

Methods

Procedures

This study was conducted in partnership with the Coaches Association of Ontario (CAO). CAO is an independent, non-profit organization that supports coaches across all levels and sports in Ontario. Ontario has the largest population of all provinces in Ontario with over 15 million people and one in four Ontarians have coached in their lifetime (10). The CAO selected the safe sport-related courses of interest for evaluation (see Table 1). As such, within the context of the current study, a broad perspective of safe sport (i.e., from injuries to drug-free sport, planning appropriate practices, and maltreatment) was adopted. Upon receiving approval from the University of Toronto Health Sciences Research Ethics Board, coaches were contacted through the Coaches Association of Ontario (CAO) email listserv and social media posts (Facebook, Instagram, Twitter). Recruitment communication provided details about study eligibility/requirements, the purpose of the study, the voluntary nature of the study, confidentiality and anonymity, and the link to the online survey. The survey was administered with RED Cap electronic data capture. Participants were required to meet the following eligibility criteria to complete the online survey: 1) Ontario resident; 2) over the age of 16; and 3) had coached in the last two years. Following the confirmation of eligibility, participants were able to complete the survey, which took approximately 15-25 minutes (M=19.25) to complete.

Table 1. An overview of the Safe Sport Education modules evaluated in the current study.

CourseOverview
NCCP Emergency Action Planning https://coach.ca/nccp-emergency-action-planUpon completion of this module, coaches will be able to: describe the importance of having an EAP; identify when to activate the EAP; explain the responsibilities of the charge person and call person when the EAP is activated; and create a detailed EAP that includes all required information for responding to an emergency.
NCCP Planning a Practice https://coach.ca/nccp-planning-practiceUpon completion of this module, coaches will be able to: explain the importance of logistics in the development of a practice plan; establish an appropriate structure for a practice; and identify appropriate activities for each part of the practice. To receive full credit for this module, coaches must also complete NCCP Emergency Action Planning.
NCCP Making Head Way https://coach.ca/nccp-making-head-way-sportUpon completion of this module, coaches will understand how to: prevent concussions; recognize the signs and symptoms of a concussion; what to do when they suspect an athlete has a concussion; and ensure athletes return to play safely.
NCCP Leading Drug-Free Sport https://coach.ca/nccp-leading-drug-free-sportUpon completion of this module, coaches will be able to: understand and demonstrate their role in promoting drug free sport; assist athletes to recognize banned substances and the consequences as identified by the Canadian Centre for Ethics in Sport; reinforce the importance of fair play and the NCCP Code of Ethics; educate and provide support to athletes in drug testing protocols; and inform athletes on nutritional supplements.
NCCP Prevention and Recovery https://coach.ca/nccp-prevention-and-recoveryUpon completion of this module, coaches will be able to: identify common injuries in sport, prevention and recovery strategies; design and implement programs/activities to optimize athlete training, performance and recovery; and support athletes’ return to sport through awareness and proactive leadership.
Commit to Kids https://protectchildren.ca/en/get-involved/online-training/commit-to-kids-for-coaches/Upon completion of this module, coaches will be able to: understand and recognize child sexual abuse and the grooming process; ways in which to handle disclosures of sexual abuse; the implications of sexual abuse; how to create a child protection code of conduct; and ways in which to enhance child and youth safety in sport.
Standard First Aid and CPR https://www.redcross.ca/training-and-certification/course-descriptions/first-aid-at-home-courses/standard-first-aid-cprUpon completion of this module, coaches will be able to: understand and apply vital life-saving knowledge/skills essential for meeting a variety of workplace/professional requirements.
HeadStartPro https://headstartpro.com/coach-course/Upon completion of this module coaches will be able to: understand and develop a set of coaching tools to improve team performance and injury-prevention; and assist athletes and/or teams in achieving their full potential with performance-driven injury prevention training.
NCCP Making Ethical Decisions https://coach.ca/nccp-make-ethical-decisionsUpon completion of this module coaches will be to: analyze challenging situations and determine the moral, legal, or ethical implications; and apply the NCCP Ethical Decision-Making Model to respond in ways that are consistent with NCCP Code of Ethics.
NCCP Empower+ (Creating Positive Sport Environments) https://coach.ca/nccp-creating-positive-sport-environmentUpon completion of this module, coaches will be able to: describe the characteristics and benefits of participant-centered coaching; explain the types of harm that may occur when a coach misuses their power; respond to suspicions or knowledge of maltreatment; and implement positive coaching strategies to foster learning, performance, and create a safe sport environment.
CAC Safe Sport https://coach.ca/safe-sport-trainingUpon completion of this module, coaches will be able to: understand the critical role of all stakeholders in promoting safe sport, how the misuse of power leads to maltreatment, and principles of the Universal Code of Conduct; understand types of maltreatment and how to recognize signs and symptoms; and respond when maltreatment is suspected and create a safe sport culture for all participants.
Respect in Sport https://www.respectgroupinc.com/respect-in-sport/Upon completion of this module, coaches will be able to: recognize, understand, and respond to issues of bullying, abuse, harassment, and discrimination.

Note. For further detail on course descriptions and/or objectives see the corresponding webpages indicated in the table.

Participants

Participants were 1365 coaches from the Coaches Association of Ontario (CAO). Of the respondents, 61% identified as men (n=823), 38% identified as women (n=514; n=28 did not disclose), 86% identified as White (n=1087), while 4% (n=53) identified as Black, 4% (n=51) identified as East/Southeast Asian, 2% (n=31) identified as Indigenous, and less than 2% identified as Latinx (n=19), South Asian (n=18), Middle Eastern (n=16), or another race category (n=27). Coaches reported working in a variety of contexts including grassroots (e.g., recreational, community sport, house league, intramural; n=273, 22%), school sports (e.g., primary and secondary school; n=141, 11%), development (e.g. competitive, club, travel, city, all-star; n=600, 49%), post-secondary (e.g., Support, CCAA, OUA, Inter-university; n=74, 6%), provincial (e.g., Canada Games, National Championships, OHL; n=90, 7%), international (e.g., International Competitions, Worlds, Pan Am, Commonwealth, Olympics; n=36, 3%), and masters or professional (e.g., Senior, NHL, NBA, CEBL; n=20, 2%). Coaches’ tenure in their current position ranged from 1-10 years (n=804, 65%), 11-20 years (n=238, 19%), and more than 20 years (n=194, 16%). Training in safe sport was required for 78% of coaches (n=782) and provided free of cost for 51% of coaches (n=535).

Measures

Safe sport training was measured with a “yes” or “no” response from coaches to indicate whether they had taken each of the following courses: NCCP[1] Emergency Action Planning, NCCP Planning a Practice, NCCP Making Head Way, NCCP Leading Drug Free Sport, NCCP Prevention and Recovery of Injury, Commit to Kids, Standard First Aid and CPR, HeadStart, NCCP Make Ethical Decisions, NCCP Empower+ (Creating Positive Sport Environments), CAC Safe Sport Training, Respect in Sport.

Knowledge & confidence to create a safe sport environment was measured using a 3-item scale (a=.7), which asked coaches about their knowledge of safe sport concepts and their confidence in creating a safe sport environment. Example items included, “I am confident in my abilities to create a safe sport environment” and “I am familiar with the responsible coaching movement.” Coaches responded to each item on a scale from 1 (strongly disagree) to 5 (strongly agree).

Safe sport stress was measured using a 3-item scale (a=.68), which asked coaches about the stress they experience over creating a safe sport environment. An example item includes, “I often stress about being the subject of a harassment or abuse claims”. Coaches responded to each item on a scale from 1 (strongly disagree) to 5 (strongly agree).

Stress about athlete well-being was measured with 2 items (a=.59): “I often stress about my ability to manage athletes’ mental well-being”, and “I often stress about my ability to manage athletes’ physical well-being.” Coaches responded to each item on a scale from 1 (strongly disagree) to 5 (strongly agree).

Efficacy to support others was measured using a 5-item scale (a=.87), which asked coaches about how confident they feel in their ability to support athletes and other coaches. An example item includes “I am confident in my abilities to support my athletes with performance issues”. Coaches responded to each item on a scale from 1 (strongly disagree) to 5 (strongly agree).



[1] NCCP refers to the National Coaching Certification Program offered by the Coaching Association of Canada.

Safe sport stress was measured using a 3-item scale (a=.68), which asked coaches about the stress they experience over creating a safe sport environment. An example item includes, “I often stress about being the subject of a harassment or abuse claims”. Coaches responded to each item on a scale from 1 (strongly disagree) to 5 (strongly agree).

Stress about athlete well-being was measured with 2 items (a=.59): “I often stress about my ability to manage athletes’ mental well-being”, and “I often stress about my ability to manage athletes’ physical well-being.” Coaches responded to each item on a scale from 1 (strongly disagree) to 5 (strongly agree).

Efficacy to support others was measured using a 5-item scale (a=.87), which asked coaches about how confident they feel in their ability to support athletes and other coaches. An example item includes “I am confident in my abilities to support my athletes with performance issues”. Coaches responded to each item on a scale from 1 (strongly disagree) to 5 (strongly agree).

Data Analysis

To investigate the first research objective, an initial correlation analysis was conducted to examine whether having any safe sport training was related to increases in coaching outcomes. The safe sport training variable was transformed so that coaches who answered “yes” to completing any of the safe sport training courses were coded as 1 and coaches who had answered “no” to completing all the safe sport training courses were coded as 0 (i.e., no SS training=0, any SS training=1). This variable was included in a correlation analysis with all coaching outcomes: knowledge & confidence, safe sport stress, stress over athlete well-being, and efficacy to support others. To investigate the second research objective, four separate linear regression models were constructed with the sum of completed safe sport training courses (range =1-12) as the independent variable, and the following coaching outcomes as respective dependent variables: knowledge & confidence, safe sport stress, stress about athlete well-being, and efficacy to support others. In all four models, the coaching context, whether training was required (0=no, 1=yes), and whether training was free (0=no, 1=yes) were included as covariates. To address the third research objective, ANOVAs were conducted with individual safe sport courses as independent variables, and the following coaching outcomes as dependent variables: knowledge & confidence, efficacy to support others, safe sport stress, stress about athlete well-being and efficacy to support others. All analyses were conducted using IBM SPSS Statistics (Version 28) (20).

Results

Safe Sport Training & Coaching Outcomes

Range, mean, and standard deviation scores for all variables included in subsequent analyses are included in Table 2. Of the coaches in this sample, 65% (n=890) reported completing at least one of the education courses, while 35% (n=475) reported not having taken any of the education courses. Results of the correlation analysis (Table 3) demonstrate that having any safe sport training was significantly related to increases in efficacy to support others, but not knowledge and confidence, safe sport stress, or stress about athlete well-being.

Table 2. Descriptive statistics for all variables

RangeMeanSD
Coaching Context (0=Grassroots)0-71.811.37
Training Required (0=No)0-1.59.49
Training Free (0=No)0-1.49.50
Any Safe Sport Training0-1.6.13
Number of Safe Sport Training0-123.643.42
Knowledge & Confidence-4-201
Safe sport stress-4-201
Stress over athlete well-being-4-201
Efficacy to Support-4-201
n=1365   
Table 3. Correlations between any safe sport training and coaching outcomes
Any Safe Sport TrainingKnowledge ConfidenceSafe Sport StressAthlete WB StressEfficacy to Support
Any Safe Sport Training1.00.06*.04.002-.03
Knowledge Confidence.06*1.00-.02.00.29**
Safe Sport Stress.04-.021.00.34**-.09**
Athlete WB Stress.002.00.34**1.00-.20**
Efficacy to Support-.03.29**-.09**-.20**1.00
**. Correlation is significant at the 0.01 level
*. Correlation is significant at the 0.05 level

Number of Safe Sport Training & Coaching Outcomes

Figure 1 demonstrates the number of safe sport courses taken by coaches in this sample based on influential covariates such as coaching context, training requirement, and training accessibility (i.e., whether the training was provided free of cost). Significantly more safe sport courses were completed by coaches in Post-Secondary, Provincial, International, Masters and Professional contexts, and by coaches for whom training and education is required and free. 

Initial correlation analysis (Table 4) demonstrated being a coach at a high level of competition (e.g., provincial, international) was related to taking more safe sport courses, higher knowledge and confidence, and higher efficacy to support others. Having access to free training was related to taking more safe sport courses and higher knowledge and confidence. Finally, taking more safe sport training courses was related to higher knowledge and confidence and efficacy to support others. Safe sport stress and stress about athlete well-being were not related to any of the independent variables.

Table 4. Correlations between number of safe sport training courses, covariates and outcome variables
Coaching ContextTraining RequiredTraining FreeSafe Sport TrainingKnowledge ConfidenceSafe Sport StressAthlete WB StressEfficacy to Support
Coaching Context1.00-.04-.03.11**.07**.01.00.08**
Training Required-.041.00.11**-.02.08**.06.03-.05
Training Free-.03.11**1.00.09**.08*.00-.06.01
Safe Sport Training.11**-.02.09**1.00.26**.05.01.10**
Knowledge Confidence.07**.08**.08*.26**1.00-.02.00.29**
Safe Sport Stress.01.06.00.05-.021.00.34**-.09**
Athlete WB Stress.00.03-.06.01.00.34**1.00-.20**
Efficacy to Support.08**-.05.01.10**.29**-.09**-.20**1.00
**. Correlation is significant at the 0.01 level
*. Correlation is significant at the 0.05 level

The results of the first regression analysis (Table 5) demonstrated that the number of safe sport training courses coaches completed was related to increases in knowledge and confidence and efficacy to support others, when training requirements, access to training, and context of the sport environment were held constant. The number of safe sport training courses coaches took was not related to safe sport stress or athlete well-being stress.

Table 5. Linear Regression Analyses for General Coach Training
Knowledge & ConfidenceSafe Sport StressAthlete WB StressEfficacy to Support
BSEBSEBSEBSE
Coaching Context.03.02.01.02.00.02.08*.02
Training Required.09*.07.06.07.03.07.04.08
Training Free.08*.06.01.06.06.06.001.06
Safe Sport Training.31**.01.05.01.003.01.12**.01
  
Adj. R-Square.12.01.00.03 
n=1365
**Coefficient is significant at the 0.01 level
*Coefficient is significant at the 0.05 level

Individual Safe Sport Courses and Coaching Outcomes

The results of the final analysis demonstrated that all courses were significantly related to improved knowledge and confidence. NCCP Emergency Action Planning, NCCP Leading Drug Free Sport, Commit to Kids, HeadStartPRO, and NCCP Empower+ (Creating Positive Sport Environments) were significantly related to reduced safe sport stress. Commit to Kids was significantly related to reduced athlete well-being stress. Finally, NCCP Planning a Practice, NCCP Leading Drug-free Sport, NCCP Prevention and Recovery, Commit to Kids, HeadStartPRO, NCCP Empower+ (Creating Positive Sport Environments), and CAC Safe Sport were significantly related to efficacy to support others (Table 6).

Table 6. Effects of Individual Safe Sport Courses
Knowledge ConfidenceSafe Sport StressAthlete WB StressEfficacy to Support Others
FSig.FSig.FSig.FSig.
NCCP Emergency Action Planning60.97<.0015.67.0171.45.2293.75.053
NCCP Planning a Practice53.82<.001.13.722.44.5097.23.007
NCCP Making Head Way64.15<.001.10.754.08.772.35.557
NCCP Leading Drug-free Sport72.82<.0015.65.018.25.61822.49<.001
NCCP Prevention and Recovery47.18<.0013.29.070.08.77714.21<.001
Commit to Kids35.88<.0015.16.0238.91.00311.29<.001
Standard First Aid and CPR17.96<.001.31.580.69.4069.73.002
HeadStartPRO7.08.00810.31.002.06.8149.15.003
NCCP Making Ethical Decisions22.26<.001.17.680.01.931.01.91
NCCP Empower+ (Creating Positive Sport Environments)15.21<.0017.92.04.315.57516.42<.001
CAC Safe Sport89.17<.001.16.6903.91.5328.41.004
Respect in Sport32.62<.001.07.797.07.7973.64.056
n=1365

Discussion

The purpose of this study was to explore the influences of safe sport training on sport coaches’ knowledge and confidence, safe sport-related stress, efficacy to support others, and stress about athlete well-being. Specific focus was directed towards examining the relationship between the number of safe sport courses completed and the effects of specific safe sport courses for these coaching outcomes. The results of this study demonstrated that having any training or education was related to increased efficacy to support others. Having completed a higher number of safe sport training courses was related to increased efficacy to support others and knowledge and confidence, and all safe sport courses were related to increased knowledge and confidence.  

Although a plethora of safe sport education exists to-date, a prominent criticism has been the lack of empirical evaluations examining the impact or effectiveness of such training (24, 26). The findings of the current study help to address this knowledge gap by providing preliminary, empirical evidence regarding the influence of safe sport education. According to the results, coaches in more professional contexts took more safe sport training courses, which supports the notion that at elite levels of sport, coaches may have more access to professional development opportunities and/or devote more time improving their coaching skills (11, 27). Coaches who were provided access to free training in the current study also took more safe sport courses. These findings suggest that when provided the opportunity, coaches engage in professional development, however, as issues of cost and accessibility remain prevalent barriers, the advancement and development for many coaches remains limited (19, 43. Online modalities have been advocated as a cost-effective, time efficient, and readily accessible way to educate coaches (13, 14) yet, for many coaches, online professional development opportunities still present financial demands. For example, of the twelve courses examined in the current study, only three (e.g., NCCP Emergency Action Planning, CAC Safe Sport, NCCP Making Headway) are listed as online and free for coaches; in the current study, it was not known if affiliated organizations where coaches instruct reimbursed education/training and, if so, for which courses. Access or lack thereof to safe sport-related education may impact the extent to which safe, inclusive, and welcoming spaces are promoted by all coaches (22, 47). This is particularly important for coaching at the youth sport level where the delivery of sport programmes is highly dependent on volunteers who, despite recognizing their critical role for nurturing developmentally appropriate and safe environments, often lack the requisite knowledge to do so (2, 44, 46).

The completion of more safe sport training courses and all courses examined in the current study was related to enhanced coaches’ knowledge and confidence. Exposing coaches to diverse topics which include but are not limited to safety, positive development, harmful practices, and mental health, are critical to improving coaches’ awareness and ability to create safe sport environments (6, 28, 30). The coaches also reported increased knowledge of the Rule of Two and the Responsible Coaching Movement; these safe sport efforts provide additional safety principles for Ontario and Canadian coaches more broadly on background screening, appropriate interactions, and ethics training (8). Findings may be interpreted to suggest that not only does safe sport education positively influence coaches’ knowledge and confidence to create safe environments but also facilitates greater awareness of safe sport efforts in the Canadian sport context, thus providing coaches with a more comprehensive perspective on ways to stimulate safer sport.

Nurturing athletes’ holistic development is a key responsibility of coaches; however, coaches may not have the necessary education and training to adequately support their athletes (41). The current findings indicate that the completion of more safe sport education as well as specific courses (e.g., NCCP Empower+, CAC Safe Sport) may nurture coaches’ expertise and confidence to actively support their athletes with personal and performance challenges. The extent to which athletes report positive coach-athlete dynamics and feel supported in their relationships with coaches has been known to influence whether they experience learning, growth, and safe sport environments (32). Safe sport training also influenced coaches’ confidence to support coaching peers/support staff with personal and performance issues; these findings are particularly important as learning by doing, having a coach mentor, and observing others are important sources of knowledge and development for coaches (43). Collectively, the improvements in coaches’ efficacy to support others (athletes and coaches) suggests that safe sport training may serve as an effective mechanism through which knowledge dissemination and learning amongst stakeholders is achieved.

Many coaches (uninformed on the benefits of positive touch) have adopted a risk-averse perspective when interacting with athletes (i.e., “no touching”) to avoid being accused of misconduct or having their behaviors misconstrued as harmful (33, 34). In the current study, no significant relationship resulted between the number of safe sport training courses completed and coaches’ perceived safe sport stress (e.g., fear of maltreatment allegations). Specific courses were identified as decreasing safe sport stress, however, some of the courses (e.g., NCCP Emergency Action Planning, HeadStartPro, NCCP Leading Drug-free Sport) focus on physical injury prevention and/or drug-free sport and do not necessarily provide broader content on maltreatment that might warrant the reported lower coach stress regarding potential accusations of harm or safe sport issues. Although coaches have commonly reported concerns about touching in sport (33), there has also been growing awareness of psychological harm and toxic cultures in sport (38, 48). The lack of reported stress regarding safe sport concerns may be reflective of coaches being less fearful of false accusations related to psychological forms of harm as opposed to sexual harms. As the survey questions referred to coach stress in relation to abuse and harassment claims broadly, further research attention is needed to assess whether education may impact coaches’ safe sport stress differently depending on the form of harm (e.g., sexual versus psychological).

It is also interesting that while safe sport education was related to coaches’ improved efficacy to support athletes with personal and performance issues, the number of completed courses was not significantly related to stress about managing athlete physical and mental well-being. Only one course (Commit to Kids) reduced coaches’ perceived stress for managing athlete well-being. Commit to Kids focuses exclusively on providing education on sexual harms; while education on sexual harms is needed to advance safe sport, psychological harm and neglect are reported far more frequently by athletes (25, 48) and thus coaches’ perceptions of their ability to manage athletes’ well-being may be limited in scope.

            NCCP Empower+ (Creating Positive Sport Environments) was associated with enhanced knowledge and confidence, improved efficacy to support others, and lower safe sport stress, whereas CAC Safe Sport Training was linked to improved knowledge and confidence and efficacy to support others. Interestingly, Commit to Kids was the only course to positively impact all coaching outcomes, despite focusing exclusively on sexual harms. As sexual harm continues to receive the most media and research attention (4, 25), education on sexual harms may be interpreted by coaches and those in the sport community to be most relevant and important for creating safe sport. Further, in Ontario and Canada more broadly, sport organizations frequently identify course equivalents where coaches may complete different courses, including CAC Safe Sport Training, Respect in Sport, NCCP Empower+, and Commit to Kids but still satisfy the safe sport-related requirements needed to instruct. The lack of an integrated approach and the various safe sport education options available may expose coaches to different experiences and levels of learning, thus providing a plausible explanation for the reported influences on coaching outcomes in the current study. To advance safe sport,evidence-informed education for coaches and stakeholders more broadly is needed (5, 47).

Limitations and Future Directions

Although this study contributes to research and practice in safe sport by providing insights into the reported benefits of safe sport education for coaches, the findings must be interpreted within the context of the current study. Considering the CAO selected the safe sport-related courses of interest for evaluation, a broad perspective of safe sport (i.e., injuries, drug-free sport, planning appropriate practices, maltreatment) was required. The data were also collected from coaches in a specific geographic region (Ontario, Canada) and thus many of the safe sport courses evaluated were exclusive to this coaching sample. The courses evaluated in the current study should not be considered an exhaustive list of all safe-sport courses; for example, since the completion of the study, several courses (e.g., Support Through Sport, Safe Sport 101 Playbook) have been revised and/or developed. Additionally, as the sport domain has been referred to one that reinforces toxic cultures, there are several education courses in Ontario and Canada more broadly on creating positive culture and inclusive environments (e.g., NCCP Coaching Athletes with a Disability), that were not included and require future consideration regarding their impact on coaches and advancing safe sport. 

The study findings highlighted a relationship between safe sport education and improvements in coach knowledge and confidence and efficacy to support others, suggesting that practitioners should explore ways to make safe sport education free of cost and accessible. However, as this study did not assess knowledge translation, future research is needed to examine if coaches’ improved knowledge, confidence and efficacy from education contributes to behavior change and the use of more developmentally appropriate and safe coaching practices. Organizational influence also remains an area of interest; for example, it would be beneficial to explore how an organization’s cultural values, priorities (e.g., win-at-all-costs vs holistic development), and support (e.g., free training), may impact coach education uptake and subsequently the effectiveness of safe sport education on coaching outcomes. Future researchers may consider a case study approach to examine the impact of safe sport education for coaches within a specific organization; for example, Likert-scales may be used to assess attitudes, beliefs, and perceptions, semi-structured interviews may help to gain deeper insights on coaches’ interpretations regarding safe sport courses, and participant observation may shed light on issues of coach behavior change resulting from safe sport education.

Conclusion

Safe sport education for coaches has been consistently advocated as a recommendation for advancing safe, inclusive, and welcoming environments, however, the influence of safe sport education remains largely unknown (24, 26). The current study contributes to the sport literature by providing an examination of the influences of safe sport training for coaches. Findings revealed a relationship between the number of safe sport training courses coaches completed and increases in their knowledge and confidence and efficacy to support others. However, the number of safe sport training courses completed was not associated with stress related to safe sport matters or athlete well-being. All safe sport courses were reportedly associated with improved coach knowledge and confidence. Several training courses were also linked to improvements in coaches’ efficacy to support others and reductions in their safe sport stress, with only one course contributing to coaches’ reduced stress related to athlete-well-being. Although the findings suggest favorable influences of safe sport training for coaches, the current study did not assess behavioral change. Future research is needed to explore whether reported improvements (e.g., knowledge and confidence) associated with safe sport education translates to coaching practice.

Applications in Sport

Safe sport education in the current study was reportedly associated with enhanced coach knowledge and confidence to create safe environments and efficacy to support athletes and other coaches/support staff. Unfortunately, as a large portion of the sport sector is run by a volunteer workforce (e.g., volunteer coaches), sport organizations remain reluctant to enforce training requirements for fear of further burdening these coaches who frequently report stress and burnout (2, 35). However, the extent to which sport organizations and their leaders prioritize and support safe sport, has been shown to impact the effectiveness of safe sport efforts (17, 37, 49). In some cases, merely having safe sport education initiatives may have little impact on creating and sustaining safer environments and appear as superficial gestures towards change, further reproducing harms (29, 31). Sport and coaching organizations are confronted with the challenge of maintaining low time and cost demands for many volunteer coaches while also providing adequate education for volunteer (and paid) coaches (19, 46).

Acknowledgements

The authors would like to thank the coaches who participated in this study along with Coaches Association of Ontario who contributed to the design and recruitment of this study.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. Battaglia, A., & Kerr, G. (2022). Examining the impact of COVID-19 on sport coaches. International Sport Coaching Journal10(1), 102-111. https://doi.org/10.1123/iscj.2022-0025
  2. Baxter, H., & Misener, K. E. (2022). Retaining volunteer coaches in child and youth sport. In Routledge Handbook of Coaching Children in Sport (pp. 412-420). Routledge.
  3. Bissett, J. E., Kroshus, E., & Hebard, S. (2020). Determining the role of sport coaches in promoting athlete mental health: A narrative review and Delphi approach. BMJ Open Sport & Exercise Medicine6(1), e000676. https://doi.org/10.1136/bmjsem-2019-000676
  4. Bjørnseth, I., & Szabo, A. (2018). Sexual violence against children in sports and exercise: A systematic literature review. Journal of child sexual abuse27(4), 365-385. https://doi.org/10.1080/10538712.2018.1477222
  5. Brackenridge, C. H., & Rhind, D. (2014). Child protection in sport: reflections on thirty years of science and activism. Social Sciences3(3), 326-340. https://doi.org/10.3390/socsci3030326
  6. Callary, B. & Gearity, B. (2019) Coach education and development in sport: Instructional strategies. Routledge.
  7. Coaching Association of Canada (2023). NCCP make ethical decisions. https://coach.ca/nccp-make-ethical-decisions
  8. Coaching Association of Canada (2023). Responsible coaching movement. https://coach.ca/sport-safety/responsible-coaching-movement
  9. Coaching Association of Canada (2023). Safe Sport training. https://safesport.coach.ca/
  10. Coaches Association of Ontario (2023). Programs and resources. https://www.coachesontario.ca/
  11. Côté, J., Erickson, K., & Duffy, P. (2013). Developing the expert performance coach. In D. Farrow, J. Baker, & C. MacMahon (Eds.), Developing sporting expertise (2nd ed., pp. 96-112). Routledge.
  12. Crooks, C. V. & Wolfe D.A. (2013). Child abuse and neglect. In E.J.  Mash & R. A. Barkley (Eds.), Assessment of Childhood Disorders (pp. 1-17). Guilford Press.
  13. Cushion, C. J., & Townsend, R. C. (2019). Technology-enhanced learning in coaching: A review of literature. Educational Review71(5), 631-649. https://doi.org/10.1080/00131911.2018.1457010
  14. Driska, A., & Nalepa, J. (2020). Self-paced online learning to develop novice, entry-level, and volunteer coaches. In B. Callary & B. Gearity (Eds.), Coach education and development in sport: Instructional strategies (pp. 166–177). Routledge.
  15. Fortier, K., Parent, S., & Lessard, G. (2020). Child maltreatment in sport: Smashing the wall of silence: a narrative review of physical, sexual, psychological abuses and neglect. British Journal of Sports Medicine54(1), 4-7. https://doi.org/10.1136/bjsports-2018-100224
  16. Gould, D. (2013). Effective education and development of youth sport coaches. President’s Council on Fitness, Sports and Nutrition: Research Digest14(4), 1-10.
  17. Gurgis, J. J., & Kerr, G. A. (2021). Sport administrators’ perspectives on advancing safe sport. Frontiers in sports and active living3, 630071. https://doi.org/10.3389/fspor.2021.630071
  18. Gurgis, J. J., Kerr, G., & Battaglia, A. (2023). Exploring stakeholders’ interpretations of safe sport. Journal of Sport and Social issues47(1), 75-97. https://doi.org/10.1177/01937235221134610
  19. Gurgis, J. J., Kerr, G. A., & Stirling, A. E. (2020). Investigating the barriers and facilitators to achieving coaching certification. International Sport Coaching Journal, 7(2), 189-199. https://doi.org/10.1123/iscj.2019-0043
  20. IBM Corp. (2022). IBM SPSS Statistics for MacOs (Version 28.0). IBM Corp. International Olympic Committee (2021). IOC Safe Sport initiatives: Overview. https://www.olympic.org/safe-sport/
  21. International Olympic Committee (2021). IOC Safe Sport initiatives: Overview. https://www.olympic.org/safe-sport/
  22. Johnson, N., Hanna, K., Novak, J., & Giardino, A. P. (2020). US center for SafeSport: Preventing abuse in sports. Women in Sport and Physical Activity Journal28(1), 66-71. https://doi.org/10.1123/wspaj.2019-0049
  23. Jowett, S., & Wachsmuth, S (2020). Power in coach-athlete relationships: The case of the women’s artistic gymnastics. In G. Kerr (Ed.), Women’s artistic gymnastics: Sociocultural perspectives (pp. 121-142). Routledge.
  24. Kerr, G., Stirling, A., & MacPherson, E. (2014). A critical examination of child protection initiatives in sport contexts. Social Sciences3(4), 742-757. https://doi.org/10.3390/socsci3040742
  25. Lang, M. (2021). Routledge handbook of athlete welfare. Routledge.
  26. MacPherson, E., Battaglia, A., Kerr, G., Wensel, S., McGee, S., Milne, A., … & Willson, E. (2022). Evaluation of publicly accessible child protection in sport education and reporting initiatives. Social Sciences11(7), 310. https://doi.org/10.3390/socsci11070310
  27. Martens, R. (2018). Successful coaching. Human Kinetics.
  28. McMahon, J. (2013). The use of narrative in coach education: The effect on short-and long-term practice. Sports Coaching Review2(1), 33-48. https://doi.org/10.1080/21640629.2013.836922
  29. Nite, C., & Nauright, J. (2020). Examining institutional work that perpetuates abuse in sport organizations. Sport Management Review23(1), 117-129. https://doi.org/10.1016/j.smr.2019.06.002
  30. Nurse, A. M. (2018). Coaches and child sexual abuse prevention training: Impact on knowledge, confidence, and behavior. Children and Youth Services Review88, 395-400. https://doi.org/10.1016/j.childyouth.2018.03.040
  31. Owusu-Sekyere, F., Rhind, D. J., & Hills, L. (2022). Safeguarding culture: towards a new approach to preventing child maltreatment in sport. Sport Management Review25(2), 300-322. https://doi.org/10.1080/14413523.2021.1930951
  32. Pills, S (2018). Perspectives on athlete-centred coaching. Routledge.
  33. Piper, H. (2014). Fear, risk, and child protection in sport: Critique and resistance. In H. Piper (Ed.), Touch in Sports Coaching and Physical Education (pp. 167-186). Routledge.
  34. Piper, H., Taylor, B., & Garratt, D. (2012). Sports coaching in risk society: No touch! No trust! Sport, Education and Society17(3), 331-345. https://doi.org/10.1080/13573322.2011.608937
  35. Potts, A. J., Didymus, F. F., & Kaiseler, M. (2019). Exploring stressors and coping among volunteer, part-time and full-time sports coaches. Qualitative Research in Sport, Exercise and Health11(1), 46-68. https://doi.org/10.1080/2159676X.2018.1457562
  36. Reynders, B., Vansteenkiste, M., Van Puyenbroeck, S., Aelterman, N., De Backer, M., Delrue, J., … & Broek, G. V. (2019). Coaching the coach: Intervention effects on need-supportive coaching behavior and athlete motivation and engagement. Psychology of Sport and Exercise43, 288-300. https://doi.org/10.1016/j.psychsport.2019.04.002
  37. Rhind, D. J., & Owusu-Sekyere, F. (2020). Evaluating the impacts of working towards the International Safeguards for Children in Sport. Sport Management Review23(1), 104-116. https://doi.org/10.1016/j.smr.2019.05.009
  38. Roberts, V., Sojo, V., & Grant, F. (2020). Organisational factors and non-accidental violence in sport: A systematic review. Sport Management Review23(1), 8-27. https://doi.org/10.1016/j.smr.2019.03.001
  39. Safe Sport International (2021). Abuse of athletes happens. http://www.safesportinternational.com/
  40. Tam, A., Kerr, G., & Stirling, A. (2020). Influence of the# MeToo movement on coaches’ practices and relations with athletes. International sport coaching journal8(1), 1-12. https://doi.org/10.1123/iscj.2019-0081
  41. Thelwell, R., Harwood, C., & Greenlees, I. (2017). The psychology of sports coaching: Research and practice. Routledge.
  42. US Center for SafeSport (2020). 2020 Athlete culture and climate survey. https://uscenterforsafesport.org/wp-content/uploads/2021/07/CultureClimateSurvey_ExternalReport_071421_Final.pdf
  43. Van Woezik, R. A., McLaren, C. D., Côté, J., Erickson, K., Law, B., Horning, D. L., … & Bruner, M. W. (2021). Real versus ideal: Understanding how coaches gain knowledge. International Sport Coaching Journal9(2), 189-202. https://doi.org/10.1123/iscj.2019-0043
  44. Vella, S., Oades, L., & Crowe, T. (2011). The role of the coach in facilitating positive youth development: Moving from theory to practice. Journal of Applied Sport Psychology23(1), 33-48. https://doi.org/10.1080/10413200.2010.511423
  45. Vertommen, T., Kampen, J., Schipper-van Veldhoven, N., Wouters, K., Uzieblo, K., & Van Den Eede, F. (2017). Profiling perpetrators of interpersonal violence against children in sport based on a victim survey. Child Abuse and Neglect, 63, 172–182. https://doi.org/10.1016/j.chiabu.2016.11.029
  46. Wiersma, L. D., & Sherman, C. P. (2005). Volunteer youth sport coaches’ perspectives of coaching education/certification and parental codes of conduct. Research quarterly for exercise and sport76(3), 324-338. https://doi.org/10.1080/02701367.2005.10599303
  47. Willson, E., Kerr, G., Battaglia, A., & Stirling, A. (2022). Listening to athletes’ voices: national team athletes’ perspectives on advancing Safe Sport in Canada. Frontiers in Sports and Active Living4, 840221. https://doi.org/10.3389/fspor.2022.840221
  48. Willson, E., Kerr, G., Stirling, A., & Buono, S. (2022). Prevalence of Maltreatment Among Canadian National Team Athletes. Journal of Interpersonal Violence37(21–22), 1-23. https://doi.org/10.1177/08862605211045096
  49. Wilson, A. L., & Rhind, D. J. (2022). Tracking progress towards the International safeguards for children in sport. Social Sciences11(8), 322. https://doi.org/10.3390/socsci11080322
2024-06-20T12:01:59-05:00June 21st, 2024|General, Research, Sport Education, Sports Coaching, Sports Exercise Science|Comments Off on Coaches’ Perspectives of the Influence of Safe Sport-Related Education

For the Good of the Game: What Keeps Soccer Referees from Renewing Their Licenses

Authors: Dr. J Ross Pruitt1, Dr. Dexter Davis2


Corresponding Author:

J. Ross Pruitt* Professor Department of Agriculture, Geosciences, and Natural Resources

269 Brehm Hall University of Tennessee at Martin

Martin, Tennessee 38238

Phone: (731)881-7254 Fax: (731)881-7968 rpruit10@utm.edu

For the Good of the Game: What Prevents Soccer Referees from Renewing Their Licenses 

ABSTRACT

The United States faces a critical shortage of youth sports referees despite a growing interest in many sports. This issue is increasingly gaining attention from sanctioning bodies, referee associations, and researchers. There is a significant cost of referee turnover and implementing strategies implemented to increase retention of officials, especially in soccer. Correct identification of the issues resulting in non-renewal of referee licenses will increase the likelihood of retention strategies being successful. This study builds on existing research by using best-worst scaling to provide a preference share on the factors that result in non-renewal which Likert scales cannot provide. Current and former U.S. Soccer Federation referees in Tennessee were surveyed to determine which factors are most likely to motivate their decision to not renew their referee license. Findings from this research indicate that motivations are different from youth referees compared to adult referees. Youth referees find the cost of refereeing and assigning are resulting in non-renewal of licenses compared to lack of respect and changing work commitments among adult referees. Results of this research can be used to improve retention strategies across age groups.

Keywords: best-worst scaling, soccer referees, referee motivations, referee retention  

Organized sports are an important part of society within the United States as it allows recreational and entertainment opportunities for participants and spectators. Sports officials are often referred to as the “third team” and are a critical aspect to the success of organized sports. In recent years, the popular press has been bombarded with stories of referee shortages (e.g., Conlon, 2022; Medina, 2022; Yurkevich, 2023) and physical attacks (Mendola, 2014; Ortiz, 2015; Weir, 2022; Hamacher, 2023). A majority of states have enacted or are considering laws to protect referees according to the National Association of Sports Officials (NASO) who tracks the status of legislation impacting sports officials (NASO, n.d.).  

Even with increased awareness of the issues of referee shortages, verbal abuse and/or physical assaults, and growing legal protections, organized sports in the United States are still facing a shortage of officials. National and grassroots sport associations have enacted strategies to reduce the turnover to aid in recruitment (Titlebaum et al., 2009) and retention (Warner et al., 2013) of sports officials. These efforts will take time to minimize the impact of verbal abuse and physical assaults that are believed to result in the exodus of sports officials (Warner et al., 2013; Downward et al., 2023). Prior research has explored the factors that result in individuals deciding to become a sports official (Furst, 1991; Kellett and Warner, 2011; Johansen, 2015; Baldwin and Vallance, 2016) and continuing as a sports official (Rainey, 1999; Rainey and Hardy, 1999; Kellett and Shilbury, 2007; Kellett and Warner, 2011; Cuskelly and Hoye, 2013; Ridinger et al., 2017; Da Gama et al, 2018; Giel and Brewer, 2020; Orviz-Martinez et al, 2021; Downward et al., 2023), but the factors resulting in non-renewal of licenses needed to officiate is less clear in the literature.  

The internal and external factors that draw individuals to officiate sports are important motivators to keep renewing their license. When one or more of these factors dissipate or change, an official’s lagging desire to continue can result in non-renewal of the soccer refereeing license. Licenses to officiate soccer are typically renewed annually which requires a conscious decision to continue or not continue. This provides the official with the opportunity to reflect whether the benefits of officiating (e.g., financial, health, social) continue to exceed the costs (e.g. cost to renew the license, additional time away from family, job stress, verbal abuse). As very few soccer referees can rely financially on officiating income alone, the need to balance family, career, and officiating is present. The popularity of youth soccer results in a constant cadre of referees needing recruitment, introductory and advanced training, and retention at the youth and grassroots level. Past research (e.g., Gomes et al, 2021) has used Likert scales and qualitative interviews to determine factors that impact continued refereeing of soccer. This study adds to the existing literature by inviting current and former soccer officials to make a choice among the alternative factors included on the survey instrument. The method used in this study presents a direct ranking of factors not provided in Likert scales. This paper continues with a literature review of the existing literature of factors attracting individuals to officiate sports and what results in the decision to no longer referee followed by a description of our survey methodology. Our survey population included current and former U.S. Soccer Federation referees. Results are then discussed with suggestions for future research presented.  

Literature Review  

The reasons an individual becomes a sports official are complex, but often include altruistic motivations (Balch and Scott, 2007) and love of the sport (Burke, Joyner, Pim, and Czech, 2000). Furst (1991) and Balch and Scott (2007) state that officials continue to officiate for social and interpersonal reasons along with a commitment to the sport. Kellett and Shilbury (2007) discuss the importance of the social and interpersonal support provided between officials to cope with the stress of officiating sports. The stress is, in part, a reflection of the need to quickly and correctly apply the rules of the sport while being in the proper position to make a decision. Initial training of new sports officials often focuses primarily on knowing the rules of the sport with some field training to practically apply what is learned. Factors that are important to keep beginning officials engaged in officiating such forming interpersonal relationships (e.g., Furst, 1991; Balch and Scott, 2007; Kellett and Shilbury, 2007; Kellett and Warner, 2011; Baldwin and Vallance, 2016) and coping with stress (e.g., Voight, 2009) are not the primary focus of initial trainings.  

Officiating sports is a stressful experience due to the complexity of making quick decisions (Guillén and Jiménez, 2001; González-Oya, 2006; Gama et al., 2018) in an environment where positive feedback for correct decisions is limited. In younger and/or inexperienced officials, the lack of experience in these environments and ability to cope with the accompanying stress can contribute to referees no longer officiating (Cuskelly and Hoye, 2013). Prior research has focused on the connection between stressors and burnout (Rainey and Hardy, 1999; Voight, 2009; Da Gama et al., 2018; Gomes et al., 2021; Orviz-Martinez et al., 2021; Downward et al., 2023) with tools like the Burnout Inventory for Referees developed by Weinberg and Richardson (1990). Stressors experienced by sports officials are not always related to the sporting event but can be representative of other factors in their lives including work, family, and support of the organization for which they officiate (Voight, 2009; Cuskelly and Hoye, 2013).  

Reasons that individuals begin refereeing may not always be the reasons they intend to continue. Kellett and Shilbury (2007) document that the interpersonal relationships developed can overcome nervousness experienced by beginning officials. These interpersonal relationships can be a positive stressor, or an indication of commitment described in Cuskelly and Hoye (2013). These may be social in nature can result in officials who, “are likely to feel somewhat compelled to continue officiating through various social mechanisms” (Cuskelly and Hoye, 2013). The level of organizational support, or the official’s perception of support, can result in an intention to continue officiating (Rainey, 1999; Kellett and Warner, 2011).  

Giel and Breuer (2020) find the altruistic motives are not a significant factor in continuing to referee. This highlights the importance of the social relationships as the stress associated with officiating, balancing family, job, and officiating, the stress associated with maintaining the desired level of performance, or other factors can result in the official questioning their desire to continue. This contributes to the belief often expressed in the popular press that burnout and verbal abuse/physical assault are primary motivators to officials leaving the sport (Kellett and Shilbury, 2007). The ability to reframe the abuse as described in Kellett and Shilbury (2007) may limit the extent to which the perception is reality. Voight (2009) finds the conflict between family and officiating, making a controversial call, conflict between work and officiating, making the wrong call, and verbal abuse from coaches as the top stressors among college soccer officials. The least amount of stress can be attributed to the fear of physical harm (Voight, 2009).  

Methods 

The decision to not renew one’s soccer referee license reflects the costs of continuing to referee (whether financial, social, or emotional) relative to the benefits accrued by refereeing. We hypothesize that referees will consider not renewing their license prior to the actual decision where the license is not renewed (Rainey and Hardy, 1999; Cuskelly and Hoye, 2013). Factors that motivate the decision to not renew one’s license are presented in Table 1. Included factors represent those included in the literature (e.g., Furst, 1991; Rainey, 1999; Rainey and Hardy, 1999; Burke et al., 2000; Balch and Scott, 2007; Kellett and Shilbury, 2007; Cuskelly and Hoye, 2013; Johansen, 2014; Giel and Breuer, 2020) as well as those from our personal experiences refereeing and coaching soccer. After the factors shown in Table 1 were selected to include in the questionnaire, the staff and mentors of the U.S. Youth Soccer Region III Championships reviewed our factors and accompanying descriptions for thoroughness. Their suggestions are reflected in our final factors presented in Table 1.  

Use of best-worst scaling (Finn and Louviere, 1992) provides the relative importance that a factor can have on a referee’s continued interest in renewing their license. This method provides an improvement over qualitative interviews which can provide insight into motivations for referees, but not a hierarchical preference ranking that can be used by referee associations to assist in retention of referees. An additional benefit of best-worst scaling is the fact it provides a ratio scale for its results unlike a Likert rating scale that may result in the ordinal ranking not being consistent across respondents (Steenkamp and Baumgartner, 1998; Lusk and Briggeman, 2009). This provides greater insight into the obstacles for a referee to annually renew their license which can lead to increased retention efforts and educational efforts by clubs and sanctioning bodies to reduce the impact of factors resulting in non-renewal of licenses. 

Best-worst scaling provides the respondent the ability to select the factor that provides the most and least utility in a choice set which Likert scales do not provide. This approach has significant implications for marketing (Cohen, 2009; O’Reilly and Huybers, 2015; Massey, Wang, and Waller, 2015) to help identify specific factors that consumers find desirable. Use of this method has extended into the healthcare industry (Flynn et al., 2007) and the value of public information (Pruitt et al., 2014). Given J factors, there are J(J-1) combinations a respondent could select for each best-worst question. The choice of the most important factor j by individual i can by represented by λj on the utility scale with the latent level of utility determined by Iij = λj + εij which assumes that εij is the random error term. By selecting factor j as the most important factor and factor k as the least important is determined by the probability for all other J(J-1)-1 possible differences in the choice set.  

Results from best-worst scaling normally occurs through a multinomial or random parameters logit. Estimate coefficients have little interpretation aside from the magnitude of the coefficient. Preference shares for each factor’s impact on lack of interest in continuing to referee is calculated using the following equation preference share for factor.

Respondents were asked if they had actively considered not renewing their U.S. Soccer Federation (USSF) referee license in the past five years. Individuals that responded yes, were then asked best-worst questions using the factors that were identified and presented in Table 1. Using PROC OPTEX in SAS 9.4, a quasi-balanced incomplete block design (BIBD) was created. The design had a treatment D-efficiency of 90.78 and a block design D-efficiency of 99.86. This resulted in twelve best-worst questions with six factors present in each question. Each factor appeared six times to each respondent with an example of the best-worst questions is provided in Figure 1.

Figure 1. Example Best-Worst Question

Survey

A web-based Qualtrics survey was created that was distributed to current and former U.S. Soccer Federation referees implementing the best-worst questions discussed previously. Through contacts with the Tennessee Soccer Referee Program, we were able to distribute the questionnaire to 3,507 current and former referees. Our ability to contact referees who had not recertified in the previous four years is due to the Tennessee Soccer Referee Program adopting computer software that allows the program to track referees who do not re-certify from year to year. Inclusion of youth referees (between the ages of thirteen and eighteen) was approved by our university’s Institutional Review Board which allows for determination if factors vary by age. Per USSF policy, any email contact from a certified USSF assignor results in the parent/guardian also being contacted1. This resulted in parents/guardians of current and former youth referees also receiving the recruitment email. Initial questions identified if the respondent was at least eighteen years of age and then determined if the respondent was answering for themselves or as parent/guardian of a current or former youth soccer referee2. For youth referees, we included questions that determined if their parent/guardian had provided consent in addition to the minor providing assent. As the parent/guardian also received the recruitment email, email addresses for minors were collected in case the parent/guardian revoked consent necessitating removal of youth referee responses. No parent or guardian contacted us requesting removal of the youth referee’s responses.

A recruitment email was sent in early March 2023 to 3,507 current and former referees registered with USSF in the state of Tennessee with a follow-up email sent two weeks later. An incentive was offered to each respondent of a gift card worth $100 to a referee equipment supplier or a free registration for the 2023 year. Email addresses were collected at the end of the questionnaire and provided to the Tennessee Soccer Referee Program which was responsible in selecting and contacting the winners of the inducement. We received 107 usable responses for a response rate of 3.05%.

Results Demographic information is provided in Table 2. Total responses did vary by question as respondents were not required to answer every demographic question which were asked following the best-worst questions. Respondents were overwhelmingly male and Caucasian. Approximately forty percent of respondents were less than twenty-five years of age and an additional twenty-five percent between the ages of forty-three and fifty-four. Over sixty percent who responded were no longer refereeing soccer with approximately two-thirds believing they were assigned the appropriate number of matches given their skill and ability level. Those receiving the questionnaire were asked an open-ended question on how many years they refereed soccer. Of the 110 responses, many did not provide an exact number. For those who provided an exact number, the average number of years that survey participants had refereed was 8.63 years. Given responses not included in this calculation that stated they had refereed 10+, 20+, or 50+ years, this estimate of 8.63 understates the longevity of referees in this research. A histogram of responses for this question is presented in Figure 2. More than three-quarters of respondents refereed no more than sixty matches a year with the majority refereeing less than fifteen matches annually. Over ninety percent of respondents only refereed soccer. Nearly seventy percent of respondents had suffered verbal abuse in the past two years with approximately five percent having suffered a physical assault (e.g., touched, pushed, shoved, punched, kicked, or spat on) by a player, coach, fan, or parent. Parents and coaches were most likely to have been the source of verbal abuse with players being the source of physical assault.

As we were able to include youth referees (less than eighteen years old), we conducted t-tests for significant differences in means between those who had actively considered not renewing their USSF licenses for youth and adult referees. We did not test for differences in means in age and educational attainment categories since we compared those less than eighteen of ages to all other ages in this comparison. Differences in the mean at the 5% level of significance (p<0.05) were found in these groupings with less than fifteen matches officiated, whether the respondent felt they were under assigned, assigned the right number of matches for their skill/ability level, and whether they play organized soccer. Table 2 includes these results.

Table 2. Demographic Information

VariableMeanStandard Deviation
Gender (n=111)  
Male75.68%0.43
Female23.42%0.43
Prefer Not to Say0.90%0.09
Ethnicity (n=111)  
Caucasian76.58%0.43
African American0.00%0.00
Hispanic5.41%0.23
Native American0.00%0.00
Asian0.00%0.00
Multi-racial6.31%0.24
Other2.70%0.16
Prefer Not to Say5.41%0.23
Age (n=111)  
13-1722.52%0.42
18-2421.62%0.41
25-308.11%0.27
31-366.31%0.24
37-421.80%0.13
43-4811.71%0.32
49-5413.51%0.34
55-603.60%0.19
Over 6010.81%0.31
Education Level (n=111)  
Currently in Middle/High School27.03%0.45
High School Diploma or GED0.00%0.00
Trade, vocational, or technical school4.50%0.21
Associate Degree4.50%0.21
Bachelor’s Degree27.93%0.45
Master’s Degree15.32%0.36
Doctoral or Professional Degree7.21%0.26
Prefer Not to Say1.80%0.13
Household Income (n=110)  
Less than $40,00010.00%0.30
$40,000 to $60,0009.09%0.29
$60,001 to $80,0008.18%0.28
$80,001 to $100,0005.45%0.23
Greater than $100,00040.00%0.49
Prefer Not to Say27.27%0.45

Table 2. Continued

VariableMeanStandard Deviation
Residence (n=111)  
Urban Area14.41%0.35
Suburban Area66.67%0.39
Rural Area18.92%0.47
Levels Officiated1  
Youth recreational33.46% 
Club28.31% 
AYSO7.35% 
High School16.18% 
College3.68% 
Adult Amateur/Recreational10.29% 
Professional0.74% 
Approximate number of annual matches  
Less than 1530.91%20.46
16-3019.09%0.39
31-4513.64%0.34
46-6012.73%0.33
61-755.45%0.23
76-908.18%0.28
91-1052.73%0.16
Over 1057.27%0.26
Proper Assigning Level (n=109)  
Under assigned25.69%20.44
Over assigned7.34%0.26
Right number66.97%20.47
Sports Officiated besides Soccer  
None92.73%0.26
1-26.36%0.25
3-40.91%0.10
5 or more0.00%0.00
Play Organized Soccer (n=110)43.64%20.50
Verbally Abused in Last Two Years (n=109)68.81%0.47
Source of Verbal Abuse1  
Player18.96% 
Coach27.01% 
Fan22.27% 
Parent31.75% 

Table 2. Continued

VariableMeanStandard Deviation
Physically Assaulted in Last Two Years (n=109)4.59%0.21
Source of Physical Assault1  
Player  
Coach  
Fan  
Parent  
Injury of at Least Four Weeks (n=109)11.93%0.33
Attend Continuing Education (n=110)  
Once a year28.18%0.45
Twice a year7.27%0.26
Three to four times a year10.00%0.30
At least five times a year0.00%0.00
Does not attend47.27%0.50
Accepts unsanctioned matches (n=110)12.73%0.33
Anticipates refereeing soccer: (n=110)  
No longer refereeing60.91%0.49
Less than one year7.27%0.26
One to two years12.73%0.33
Three to four years8.18%0.28
At least five years10.91%0.31

1 Question allowed multiple responses and standard deviations are not presented as a result.
2 Denotes significant differences at the 5% level (p<0.05) between youth and adult referees who had actively considered not renewing their license.

Non-Renewal of Referee License

Respondents who answered they had actively considered not renewing their license in the past five years were shown a series of questions asking them to select the most and least important factors impacting why they would not renew their refereeing license. As our sample included youth referees (those less than 18 years of age), we estimated a combined model for all referees responding against the alternative models of youth and adult referees. Each of these models was estimated using a multinomial logit (MNL), an uncorrelated random parameters logit (RPL), and a correlated random parameters logit model. Significant differences were found to exist between youth and adult referees who were considering not renewing resulting in separate models being estimates for youth and adult referees. Likelihood ratio tests favored the use of MNL model for both youth and adult referees.

Youth Referees

Results for youth referees are presented in Table 3 uses Work as the base factor with results. Estimates for the MNL and RPL models are presented with the MNL preferred by use of a likelihood ratio test. Aside from their magnitude, the econometric estimates in Table 3 have no natural interpretation and equation 1 was used to calculate the shares of preference that are presented. The shares of preference for the uncorrelated RPL model were generated from 1,000 random draws using a normal distribution of the mean and standard deviation of a specific factor that might result in a referee not renewing their USSF license. Shares of preference were consistent between the two modeling techniques as there was not greater than ±0.01% difference for any factor. The cost to referee (i.e., Afford) was the number one reason that youth referees had considered not renewing their USSF license. This factor includes the inability to make it to matches for youth referees reflecting the need for an adult or friend to help them make it to assignments. Note that even with a small sample size of youth referees, fifteen of the eighteen youth referees were no longer refereeing. The youth referee’s opinion on how well they were assigned was the second most important factor with the lack of Respect from fans, players, and coaches third (depending on the model used). It should be noted that the fourth most important factor was Game Fees, indicating the cost to benefit ratio for youth referees is contributing to non-renewals. The use of best-worst scaling provides a clearer view of the magnitude of factors resulting in youth referees not renewing their licenses through the direct comparisons with the lack of Respect relatively not as important as other factors.

Table 3.  Relative Importance of Factor Impacting Non-Renewal of Youth Referee Licenses

FactorEconometric EstimatesShares of Preference
 MNLRPLMNLRPL
Respect0.995***1.000***0.1530.153
 (0.255)a(0.256)[0.000][0.002]
 [0.000]b[0.018]  
Youth Involvement-0.761***-0.763***0.0270.026
 (0.252)(0.254)[0.000][0.000]
 [0.000][0.000]  
Social Aspects0.271***0.2700.0740.074
 (0.258)(0.265)[0.000][0.002]
 [0.000][0.172]  
Family Commitments-0.865***-0.859***0.0240.024
 (0.243)(0.246)[0.000][0.000]
 [0.000][0.001]  
Injury-0.491*-0.496*0.0350.034
 (0.256)(0.258)[0.000][0.001]
 [0.000][0.000]  
Lack of Opportunities to Advance-0.189-0.1880.0470.047
 (0.255)(0.257)[0.000][0.001]
 [0.000][0.002]  
Cost to Referee1.123****1.130***0.1740.174
 (0.255)(0.256)[0.000][0.002]
 [0.000][0.005]  
Age-1.178***-1.138***0.0170.018
 (0.248)(0.279)[0.000][0.001]
 [0.000][0.355]  
Assigning0.999***1.009***0.1540.155
 (0.255)(0.258)[0.000][0.002]
 [0.000][0.031]  
Game Fees0.913***0.915***0.1410.141
 (0.265)(0.267)[0.000][0.003]
 [0.000][0.001]  
Lack of Organizational Support0.524**0.529**0.0960.096
 (0.258)(0.259)[0.000][0.001]
 [0.000][0.001]  
Work0.0000.0000.0570.058
(Base Factor)  [0.000][0.015]
     
Log Likelihood-625.138-624.910  
McFadden’s LRI0.0940.149  
Number of Respondents1818  

            ***, **, and * asterisks represent the factor is significantly different from the Work factor at the 1%, 5%, and 10% level, respectively.

a Numbers in parentheses are standard errors.
b numbers in brackets are standard deviations.

In addition to the shares of preference presented in Table 3, we generated Pearson correlations from the individual specific RPL estimates shown in Table 4. Several factors had correlations with at least ±0.3 with another factor. Given the limited number of responses, care should be taken when viewing Table 4, but it provides an indication of how youth referees view these factors influencing their decision to not continue refereeing. The more likely a youth referee viewed the lack of Social camaraderie, the higher an injury might factor into a non-renewal decision. Importantly, the lack of Social connections had a strong direct relationship with their views of Organizational Support provided to them. Concerns about how many games the referee was assigned had a positive relationship with Game Fees being an important factor in the decision to not renew the license. Game Fees tended to have large (positive or negative) correlations with many factors that were included in this research.

Table 4.  Pearson Correlations Between Factors from Individual Specific RPL Estimates of Youth Referees

Factor1234567891011
Respect (1)1.000          
Youth Involvement (2)0.0071.000         
Assign (3)-0.1400.1771.000        
Social (4)-0.1760.410-0.3011.000       
Injury (5)-0.007-0.439-0.4940.5051.000      
Advance (6)-0.211-0.8320.0180.2220.2121.000     
Age (7)0.1640.8740.100-0.248-0.448-0.9191.000    
Cost (8)-0.043-0.159-0.2640.2270.079-0.0730.0961.000   
Game Fees (9)-0.1230.7250.476-0.569-0.737-0.5380.694-0.0461.000  
Organizational Support (10)0.097-0.338-0.1720.5140.5440.189-0.3320.249-0.6691.000 
Family (11)-0.326-0.753-0.0300.4890.5640.723-0.860-0.025-0.6100.5311.000

Adult Referees

Results for adult referees who had considered not renewing their USSF license are presented in Table 5. As with youth referees, a MNL model was preferred to an uncorrelated RPL model with the estimates from both models presented. Unlike youth referees, the lack of Respect experienced by adult referees is the primary reasons resulting in the non-renewal decision. Work commitments or a change in them was the second most important factor. Nearly two-thirds of adult referees who had considered not renewing their license were no longer refereeing; fifteen were considering not renewing in more than the next two years with only four considering refereeing at least four more years.

Table 5.  Relative Importance of Factor Impacting Non-Renewal of Adult Referee Licenses

FactorEconometric EstimatesShares of Preference
 MNLRPLMNLRPL
Respect0.558***0.568***0.2370.238
 (0.113)(0.114)[0.000][0.003]
 [0.000][0.028]  
Youth Involvement-1.571***-1.582***0.0280.028
 (0.117)(0.119)[0.000][0.000]
 [0.000][0.004]  
Social Aspects-1.313***-1.312***0.0360.036
 (0.118)(0.131)[0.000][0.001]
 [0.000][0.3480]  
Family Commitments-0.688***-0.688***0.0680.068
 (0.112)(0.131)[0.000][0.002]
 [0.000][.450]  
Injury-0.794***-0.795***0.0610.061
 (0.117)(0.118)[0.000][0.001]
 [0.000][0.010]  
Lack of Opportunities to Advance-0.828***-.833***0.0590.059
 (0.116)(0.117)[0.000][0.001]
 [0.000][0.001]  
Cost to Referee-.481***-0.474***0.0840.084
 (0.115)(0.116)[0.000][0.001]
 [0.000][0.016]  
Age-1.455***-1.468***0.0320.031
 (0.117)(0.127)[0.000][0.001]
 [0.000][0.179]  
Assigning-0.491***-0.482***0.0830.083
 (0.116)(0.117)[0.000][0.001]
 [0.000][0.001]  
Game Fees-0.350***-0.348***0.0950.095
 (0.120)(0.121)[0.000][0.002]
 [0.000][0.009]  
Lack of Organizational Support-0.510***-0.514***0.0810.081
 (0.115)(0.116)[0.000][0.001]
 [0.000][0.001]  
Work0.0000.0000.1350.135
(Base Factor)  [0.000][0.014]
     
Log Likelihood-2843.485-2838.531  
McFadden’s LRI0.0660.097  
Number of Respondents7777  

***, **, and * asterisks represent the factor is significantly different from the Work factor at the 1%, 5%, and 10% level, respectively.

a Numbers in parentheses are standard errors.
b numbers in brackets are standard deviations.

As with the youth referees, Pearson correlations for the adult referees are presented in Table 6. A greater response rate among adults compared to youth referees provides more robustness in the correlations that are presented. It is interesting to note the strong negative correlation between Game Fees and Assign (-0.591) suggesting concerns about pay is not tied to assigning. Concerns about Game Fees and the ability to Advance had a strong positive relationship (0.607) indicating adult referees view the pay for higher level games isn’t a strong enough incentive to advance. Those referees who rated the inability to Advance highly was negatively correlated (-0.611) with concerns about being over or under assigned (Assign).

Table 6.  Pearson Correlations Between Factors from Individual Specific RPL Estimates of Adult Referees

Factor1234567891011
Respect (1)1.000          
Youth Involvement (2)0.0631.000         
Assign (3)-0.304-0.5781.000        
Social (4)-0.105-0.0520.0171.000       
Injury (5)0.1530.533-0.587-0.1241.000      
Advance (6)0.3000.387-0.6110.2170.4181.000     
Age (7)-0.172-0.2300.089-0.192-0.115-0.2871.000    
Cost (8)0.2750.179-0.4600.0280.1960.542-0.2821.000   
Game Fees (9)0.0460.444-0.591-0.1240.4010.607-0.0150.3361.000  
Organizational Support (10)0.129-0.036-0.055-0.0690.049-0.334-0.0930.007-0.1971.000 
Family (11)-0.255-0.2790.574-0.136-0.543-0.3380.147-0.483-0.3230.0361.000

Conclusions

Concerns about retaining sports officials are a pressing factor for many sports with referee abuse a concern among leagues and official associations. Factors influencing the decision to not renew referee licenses are not well understood in the literature. Prior research has focused on qualitative factors impacting the renewal decision which doesn’t quantitatively rank factors included in the research. This research surveyed current and former referees who had actively considered not renewing their referee license with a majority no longer refereeing soccer. There were significant differences between youth and adult referees in the factors that had led them to consider not renewing their referee license. For youth, the cost to referee and concerns about being over- or under-assigned were the top two reasons for considering not renewing their license compared to adults who were more concerned about the lack of respect and work commitments. For both age groups, concerns about organizational support were significant factors as it relates to continuing refereeing.

Our study is limited by the small sample size, but it is an important look into the factors that resulted in a majority of referees no longer renewing their U.S. Soccer Federation license. While we do not focus on the well-being of referees as in Downward and Webb (2023), our findings are consistent with theirs that a zero-tolerance approach will aid in adult referee retention. This reinforces the need for organizational support (Rainey, 1995; Voight, 2007; Ridinger et al., 2017; Downward and Webb, 2023), but also requires training by those organizations on what to include in post-match reports to have the backing. As over 75% of respondents in our survey did not attend more than one continuing education session annually, sanctioning bodies and referee associations need innovative ideas to aid in reaching this objective.

Future research should focus on expanding this to referees who have not recently considered non-renewal of their referee licenses. This portion of the referee community will likely have different factors motivating their continued renewals as was demonstrated by the differences observed in this paper based on the age of the referee. Identification of the factors that aid in retention of these referees may aid in development of strategies to limit the impact of factors discussed in this research. Given the nature of soccer in the U.S., future research should better control for the differences in length of refereeing and level officiated (e.g., recreational versus club). With the number of young referees who work matches in the U.S., the skills necessary to be successful may not have been developed to handle the stressors commonly associated with officiating (Rainey, 1995; Rainey and Hardy, 1999; Burke et al., 2000; Voight, 2009; Gomes et al., 2021). A more diverse respondent pool, in terms of locality, gender, and ethnicity, is also needed to better understand why referees continue to engage in a stressful avocation.

Acknowledgements

The authors express appreciation to Don Eubank, State Referee Administrator for Tennessee Soccer, for sending the questionnaire to soccer referees in the state and providing the incentive for respondents to complete the questionnaire. We also thank the staff and mentors of U.S. Youth Soccer Region III for helpful feedback on an early draft of the questionnaire. The authors are grateful for the helpful edits and suggestions from Marco Palma on an earlier draft of this paper.

Conflicts of Interest

J. Ross Pruitt is an active soccer referee with the U.S. Soccer Federation, Tennessee Secondary School Athletic Association, and National Intercollegiate Soccer Official Association.

References

  1. Balch, M. J., & Scott, D. (2007). Contrary to Popular Belief, Refs are People Too! Personality and Perceptions of Officials. Journal of Sport Behavior, 30(1).Baldwin, Christopher, and Roger Vallance. “Rugby Union Referees’ Experiences with Recruitment and Retention,” n.d.
  2. Burke, K. L., Joyner, A. B., Pim, A., & Czech, D. R. (2000). An exploratory investigation of the perceptions of anxiety among basketball officials before, during, and after the contest. Journal of Sport Behavior, 23(1).Cohen, E. (2009). Applying best-worst scaling to wine marketing. International Journal of Wine Business Research, 21(1), 8-23. https://doi.org/10.1108/17511060910948008.
  3. Conlon, C. (2022, September 13). Years-long Montana referee shortage getting worse as cancellations loom. Q2 News (KTVQ). https://www.ktvq.com/news/local-news/years-long-referee-shortage-getting-worse-as-cancellations-loom. Accessed June 13, 2023.
  4. Cuskelly, G., & Hoye, R. (2013). Sports officials’ intention to continue. Sport Management Review, 16(4), 451-464.
  5. Da Gama, D. R. N., Nunes, R. D. A. M., Guimarães, G. L., Leandro De Lima, E. S., De Castro, J. B. P., & Vale, R. G. D. S. (2018). Analysis of the burnout levels of soccer referees working at amateur and professional leagues of Rio de Janeiro, Brazil. Journal of Physical Education and Sport, 18, 1168-1174.
  6. Downward, P., Webb, T., & Dawson, P. (2023). Referee abuse, intention to quit, and well-being. Research quarterly for exercise and sport, 1-11.
  7. Finn, A., & Louviere, J. J. (1992). Determining the appropriate response to evidence of public concern: the case of food safety. Journal of Public Policy & Marketing, 11(2), 12-25.
  8. Flynn, T. N., Louviere, J. J., Peters, T. J., & Coast, J. (2007). Best–worst scaling: what it can do for health care research and how to do it. Journal of health economics, 26(1), 171-189.
  9. Furst, D. M. (1991). Career contingencies: Patterns of initial entry and continuity in collegiate sports officiating. Journal of Sport Behavior, 14(2), 93.
  10. Giel, T., & Breuer, C. (2020). The determinants of the intention to continue voluntary football refereeing. Sport Management Review, 23(2), 242-255.
  11. Gomes, A. R., Fontes, L. M. C., Rodrigues, M., & Dias, B. (2021). Burnout in referees: Relations with stress, cognitive appraisal, and emotions. González-Oya, J. Psicología Aplicada al Árbitro de Fútbol: Características Psicológicas y su Entrenamiento; Wanceulen: Sevilla, Spain, 2006.
  12. Guillén, F., & Feltz, D. L. (2011). A conceptual model of referee efficacy. Frontiers in psychology, 2, 25.
  13. Guillén García, F., & Jiménez Betancort, H. (2001). Características deseables en el arbitraje y el juicio deportivo. Revista de psicología del Deporte.
  14. Hamacher, B. (2023, January 25). Soccer player arrested after video shows him attacking referee in Kendall: Police. NBC 6 South Florida. https://www.nbcmiami.com/news/local/soccer-player-arrested-in-kendall-referee-attack-caught-on-camera-police/2957549/. Accessed June 13, 2023.
  15. Jacobs, B. L., Tingle, J. K., Oja, B. D., & Smith, M. A. (2020). Exploring referee abuse through the lens of the collegiate rugby coach. Sport Management Review, 23(1), 39-51.
  16. Johansen, B. T. (2015). Reasons for officiating soccer: the role of passion-based motivations among Norwegian elite and non-elite referees. Movement & Sport Sciences-Science & Motricité, (87), 23-30.
  17. Kellett, P., & Shilbury, D. (2007). Umpire participation: Is abuse really the issue?. Sport Management Review, 10(3), 209-229.
  18. Kellett, P., & Warner, S. (2011). Creating communities that lead to retention: The social worlds and communities of umpires. European Sport Management Quarterly, 11(5), 471-494.
  19. Lusk, J. L., & Briggeman, B. C. (2009). Food values. American journal of agricultural economics, 91(1), 184-196.
  20. Massey, G. R., Wang, P. Z., Waller, D. S., & Lanasier, E. V. (2015). Best–worst scaling: A new method for advertisement evaluation. Journal of Marketing Communications, 21(6), 425-449.
  21. Medina, E. (2022, April 21). Bad behavior drove a referee shortage. Covid made it worse. The New York Times. https://www.nytimes.com/2022/04/21/sports/referee-shortage-youth-sports.html. Accessed June 13, 2023.
  22. Mendola, N. (2014, July 31). Testimony in death of Michigan referee provides disturbing glimpse into incident – NBC Sports. NBC Sports. https://soccer.nbcsports.com/2014/07/31/testimony-in-death-of-michigan-referee-provides-disturbing-glimpse-into-incident/. Accessed June 13, 2023.
  23. Legislation status – National Association of Sports Officials. (2023, October 12). National Association of Sports Officials. https://www.naso.org/resources/legislation/legislation-status/. Accessed November 1, 2023.
  24. O’Reilly, N., & Huybers, T. (2015). Servicing in sponsorship: A best-worst scaling empirical analysis. Journal of sport management, 29(2), 155-169.
  25. Referee drilled by two Texas high school football players was a Fill-In. (2015, September 9). NBC News. https://www.nbcnews.com/news/us-news/referee-pummeled-two-texas-high-school-football-players-was-fill-n424346. Accessed June 13, 2023.
  26. Orviz-Martínez, N., Botey-Fullat, M., & Arce-García, S. (2021). Analysis of burnout and psychosocial factors in grassroot football referees. International Journal of Environmental Research and Public Health, 18(3), 1111.
  27. Pruitt, J. R., Tonsor, G. T., Brooks, K. R., & Johnson, R. J. (2014). End user preferences for USDA market information. Food Policy, 47, 24-33.
  28. Rainey, D. (1995). Sources of stress among baseball and softball umpires. Journal of Applied Sport Psychology, 7(1), 1-10.
  29. Rainey, D. W. (1999). Sources of stress, burnout, and intention to terminate among basketball referees. Journal of sport behavior, 22(4), 578-590.
  30. Rainey, D. W., & Cherilla, K. (1993). Conflict with baseball umpires: An observational study. Journal of Sport Behavior, 16(1), 49-60.
  31. Rainey, D. W., & Hardy, L. (1999). Sources of stress, burnout and intention to terminate among rugby union referees. Journal of Sports Sciences, 17(10), 797-806.
  32. Ridinger, L. L., Warner, S., Tingle, J. K., & Kim, K. R. (2017). Why referees stay in the game. Global Sport Business Journal, 5(3), 22.
  33. Steenkamp, J. B. E., & Baumgartner, H. (1998). Assessing measurement invariance in cross-national consumer research. Journal of consumer research, 25(1), 78-90.
  34. Titlebaum, P. J., Haberlin, N., & Titlebaum, G. (2009). Recruitment and retention of sports officials. Recreational Sports Journal, 33(2), 102-108.
  35. Voight, M. (2009). Sources of stress and coping strategies of US soccer officials. Stress and Health: Journal of the International Society for the Investigation of Stress, 25(1), 91-101.
  36. Warner, S., Tingle, J. K., & Kellett, P. (2013). Officiating attrition: The experiences of former referees via a sport development lens. Journal of Sport Management, 27(4), 316-328.
  37. Weinberg, R. S., & Richardson, P. A. (1990). Psychology of officiating. Leisure Press.
  38. Weir, G. (2022, September 10). Arkansas High School Football Game Put On Pause After Elderly Fan Tries To Attack Referee. OutKick. https://www.outkick.com/arkansas-high-school-football-fan-attacks-referee-friday-night-lights/. Accessed June 13, 2023.
  39. Wolfson, S., & Neave, N. (2007). Coping under pressure: Cognitive strategies for maintaining confidence among soccer referees. Journal of Sport Behavior, 30(2), 232-247.
  40. Yurkevich, V. (2023, May 18). America has an umpire shortage. unruly parents aren’t helping | CNN Business. CNN. https://www.cnn.com/2023/05/18/business/umpire-shortage-parent-behavior/index.html. Accessed June 13, 202
2024-05-08T12:27:56-05:00May 31st, 2024|General, Sports Coaching, Sports Management|Comments Off on For the Good of the Game: What Keeps Soccer Referees from Renewing Their Licenses

Can there be two speeds in a clean peloton? Performance strategies in modern road cycling

Authors: Karsten Øvretveit1

1K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing,

Corresponding Author:

K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology,
Trondheim, Norway, PB 8905, N-7491 Trondheim, Norway
karsten.ovretveit@ntnu.no

Karsten Øvretveit, MSc3, is a physiologist and PhD candidate at the Norwegian University of Science and Technology (NTNU). His research areas include genetic disease risk, physical performance, motivational dynamics, and human nutrition.

Can there be two speeds in a clean peloton? Performance strategies in modern road cycling

ABSTRACT

In the history of professional cycling, riders have always sought competitive advantages. Throughout 20th century, many relied on performance-enhancing drugs (PEDs) which gave rise to a phenomenon called “two-speed cycling”. Throughout its modern era, professional cycling has seen anti-doping efforts repeatedly intensify on the heels of several large doping scandals. Over the past decade, the sport appears to have transitioned away from large-scale systematic doping and towards novel, legal performance-enhancing strategies, facilitated by a close relationship with scientific, technological, and engineering communities. The tools and technologies available to assess the demands of the sport, the capabilities of the riders, and the role of environmental factors such as wind resistance, altitude, and heat are more refined and comprehensive than ever. Teams and riders are now able to leverage these to improve training, recovery, equipment, race tactics and more, often from a very early age. This review explores several key developments in road cycling and their implications for the modern professional peloton.


Key Words: professional cycling; performance-enhancing drugs; marginal gains; performance analysis

INTRODUCTION

The main pack of riders navigating the road in a cycling race, known as the peloton, comprises a wide range of physiological, anthropometrical, technical, and strategical attributes. The role of each rider in a given race is typically based on strengths, weaknesses, and objectives, and can be modified by injuries, fitness level, personal goals, and unexpected in-race developments. The concept of “cycling at two speeds”, cyclisme à deux vitesses, has historically been used to distinguish between chemically enhanced riders and those who ride clean (134). However, despite increasingly stringent doping controls in professional cycling along with a clear shift in doping culture, the concept of two-speed cycling remains.
Given the well-documented benefits of performance-enhancing drugs (PEDs), there is an expectation that the intensification of anti-doping measures in professional cycling leads to more homogeneous performance levels in the peloton by reducing the number of artificially enhanced riders. Although this may be a reasonable assumption, it discounts the many substantial advances made in training, nutrition, technology, and strategy, as well as the growing talent pool of potential professionals and the early age at which they begin to seriously structure their training, racing, and recovery. These factors can differ greatly between teams and individual riders and thus help maintain the two-speed phenomenon. This review provides a brief history of the PED culture and use in professional cycling, followed by an examination of some of the key developments in the sport that has helped preserve the two-speed phenomenon in a peloton riding within an increasingly strict anti-doping framework.

The performance-enhanced past of the peloton

Drugs have been used to enhance athletic performance for millennia, stretching back to at least the ancient Olympic Games (16). Cycling as a profession emerged among working-class men who likened endurance sports to physically demanding jobs where the use of drugs to aid performance was considered the right thing to do (58). Indeed, doping has been pervasive in professional cycling for over 150 years, throughout most of which it was either legal or not subject to testing (34). For decades, riders doped to simply be able to do the job – faire le métier (33). Then, athlete health became a concern and a major driving force to regulate, if not outright ban the use of certain substances. Drug testing in the Tour de France (TdF), the most prestigious event on the race calendar, began in 1966. Despite this, amphetamines, cortisone, and steroids remained widespread in the professional peloton. It was also around this time that rumors about the use of blood transfusions in athletes began (60). The year after Raymond Poulidor underwent the first drug test in the TdF, Tom Simpson collapsed on the ascent of Mount Ventoux and later passed away due to an unfortunate combination of alcohol, amphetamines, intense heat, and extreme physical exertion. Although this event brought more attention to the use of stimulants and other drugs in cycling and in sports in general (69), doping would persist for decades to follow. Based on interviews with riders on a professional cycling team at the turn of the millennium, psychiatrist Jean-Christophe Seznec (115) asserted that professional cyclists are not only prone to develop an addiction to PEDs, but also recreational drugs, noting the importance of explicitly acknowledging this risk in order to mitigate it.

When professional cycling entered the 90s, the banned yet at that time undetectable erythropoiesis-stimulating agent (ESA) recombinant human erythropoietin (rHuEPO) arrived in the peloton (101), and performances hit a new level. Increasing circulating erythropoietin (EPO) by illegal means has been perceived by some riders and coaches to give an estimated performance boost, without the term “performance” being strictly defined, of 3% to 20% (31, 100, 134, 138). Interestingly, despite its popularity in the peloton, the research literature on the effects of ESAs such as rHuEPO on endurance performance is equivocal. Its effects on hematological values like hemoglobin concentration ([Hb]) and clinical measurements of power and maximal oxygen uptake (V̇O2max) are well-established, but the real-world benefits are not always clear (116, 123).

There are several aspects of professional cycling that are difficult to account for in experimental studies on exogenous EPO, such as the extremely high fitness level of a peaked professional cyclist and the physiological impact of training and racing on parameters such as Hb. A recent randomized controlled trial found no apparent benefit of EPO on relevant performance markers has sometimes been cited to shed doubt on the true effects of the drug (47). However, this study was done in cyclists with an average V̇O2max of 55.6 mL/kg/min, which is substantially lower than their professional counterparts (124). By his own account, former professional Michael Rasmussen saw his hematocrit (Hct) drop from 41% to 36% following the 2002 Giro d’Italia (98), illustrating how blood composition can be severely perturbed by training and racing. Similar values have been observed in other professionals following participation in Grand Tours (17, 89). Using Rasmussen as an example, using rHuEPO to bring this up to 49%, just below the old 50% limit, would represent a relative Hct increase of 36% and result in improved ability to maintain a much higher intensity in training and racing, and consequently greater exercise-induced adaptations.

Throughout the 90s, Grand Tour riders with supraphysiological Hct would traverse France, Italy, and Spain at impressive speeds until it all seemingly came to an end in 1998. Three days before the start of the 85th edition of the TdF, a Festina team car carrying various PEDs was stopped by customs agents at the French-Belgian border. This event marked the start of what later became known as the Festina affair, a major catalyst in cycling’s transition to a cleaner sport. The wake of this scandal saw an increasing number of calls to action against doping, including by the driver of the Festina car (132), with claims of the sport dying unless drastic action is taken. Subsequent large-scale doping cases such as Operación Puerto and the contents of the USADA’s Reasoned Decision Report (10) served as reminders that PEDs were still present in the peloton and strengthened the resolve of those fighting for a cleaner sport.
Although riders are often blamed for the pervasive drug use in cycling, most entered a sport with a lack of top-down anti-doping efforts, leaving them with the difficult choice of either conforming to the culture or competing on unequal terms. One of the most crucial steps towards a cleaner sport is a change in culture among teams and riders. Much, if not most, of the credit should go to the riders themselves, many of which have actively pushed against the use of PEDs for years (46, 50, 59, 85, 130). Today, most doping cases in cycling are among semi-professional riders, whereas the number of riders testing positive at the highest level is approaching zero (88).

Although absence of evidence is not evidence of absence, fewer doping cases at the highest level of cycling suggests that overt, systematic drug use is a thing of the past. Given professional cycling’s checkered history, it would be naïve to think that doping has been eliminated entirely, but the sport does appear to have evolved beyond doping being perceived as all but necessary to gain entry into the professional peloton. Generational shifts not only among riders, but also among governing bodies and team leadership have contributed to an overall firmer stance against doping, removing potentially significant contributors to anti-doping violations (6). There is also indications that the post-Armstrong generation, especially those who started their careers young, are less likely to use PEDs (5), although the evidence is equivocal (64). Additionally, anti-doping technology continues to improve, with recent advances such as gene expression analysis being able to extend the detection window of blood manipulations (28, 133).

Conceptual approaches to legal performance development

It could be argued that the extraordinary performances regularly being on display by the current generation of riders suggest that the dismantling of systematic doping practices has led to progression rather than regression of the sport of cycling. The transition away from prevalent PED use has forced teams and riders to seek out other areas of improvement, some with barely measurable effects, to keep up. Although seeking improvements in many areas is not a new phenomenon in professional cycling, it has received increasing attention over the past decade with the success of Team Sky, now INEOS Grenadiers, and team director, Dave Brailsford, who called this concept “marginal gains”. Brailsford and his team set out to win the TdF within five years with a clean British rider (29). To achieve this, he brought with him the approach he used as a performance director for British Cycling, which had led to considerable success in track cycling. Team Sky was established on the back of British dominance in the Laoshan velodrome during the 2008 Beijing Olympics, where they took home seven gold medals. As he transitioned from the track to the road, Brailsford brought the idea that compiling enough marginal gains could provide a greater performance advantage than PEDs (87).

Although the marginal gain concept came to prominence with Team Sky during one of professional cycling’s most recent avowed shift from banned to legal performance-enhancing strategies, it has been practiced by cyclists since at least the mid-1900s. Italian Fausto Coppi, who rode to multiple victories in the TdF and Giro d’Italia, as well as in one-day classics throughout the 40s and early 50s, was an early adopter of novel diet and training approaches. After World War II, the sport of cycling was anything but advanced and Coppi set out to change that. He worked with Bianchi to develop bikes and other equipment; he adapted his diet to better fuel his riding – not only its contents, but also the timing and amount; and he explored strategies for how to best race as a team (37). Some of these developments would later influence other greats, such as Eddie Merckx, who, among other things, was obsessed with proper bike fit (38). Current director of the French national team, Cyrille Guimard, has also long been known for his application of cutting-edge technology and training methods. One of his former riders, Laurent Fignon, described him as being “right up-to-date. He had files for everything. He was interested in all the lates training methods. Where his protégés were concerned, he would look at the very last detail and even the slightest defect would be corrected. He knew how to ensure everyone had the very best equipment that was on the market: made-to-measure bikes, the newest gadgets.” (32, p. 56).

 The notion that modern riders can surpass past performances solely through legal performance strategies rests on the assumption that these strategies, particularly when combined, are highly effective. Furthermore, a larger pool of athletes and an earlier onset of structured athletic development might amplify these effects. The following section explores the degree of improvement that can be made in the areas of training, nutrition, and technology.

There is not a single anthropometric or physiological characteristic that is completely uniform across high-level cyclists (65, 111). Those with elite potential tend to have stand-out absolute measurements of aerobic fitness and power, but these are attributes that can also be found in cyclists of lower caliber. Elite riders also possess very high power-to-weigh ratios, typically expressed as watts per kilogram (W/kg). An emerging concept that may also distinguish riders of different caliber is durability, i.e., the point and degree of physiological decline during extended exercise (66, 79, 80). Laboratory measurements of key performance determinants such as power-to-weigh ratio, V̇O2max, cycling economy, critical power, and peak power output provide a detailed physiological profile of each individual rider but cannot accurately predict real-life performance.

Training Strategies

Aided by technology, experience, and insights from a growing body of research, training is more refined, structured, and supervised than before, with most, if not all, training sessions serving a specific purpose. Each rider typically follows an individualized training plan that is carried out under comprehensive monitoring of variables such as heart rate, power output, climate, and terrain. These data, along with laboratory measurements, race outcomes, and even psychological variables, are used to adjust volume, frequency, intensity, and/or modality throughout the season. This allows each rider to absorb as much recoverable training volume as possible to optimize physiological adaptations and peak repeatedly for competition while avoiding overtraining. Whereas virtually every single pedal stroke of the modern rider is quantified and analyzed to guide training, racing, and recovery, riders of the past relied more on “feel”, often opting for subjective rather than objective measurements of output. During the 1987 TdF, Laurent Fignon declared his legs to be “functioning again, more or less”, but did not see the value in monitoring his heart rate, explaining that “I lost my temper with those blasted pulse monitors: I handed mine back so that it wouldn’t tell me anything anymore” (32, p. 182).

Although W/kg is often favored as an indicator of riding capacity and a way to quantify cycling performances, a large V̇O2max has long been considered a basic requirement of entry into the professional peloton. Values reported for GC contenders are generally comparable between generations, with the lowest value found in the most dominant TdF rider of all time, albeit with an asterisk (table 1). There are a few caveats to these numbers, such as the validity of the actual measurement, most of which are not described in the research literature but rather in media. Moreover, oxygen uptake does not increase in proportion to body mass and scaling V̇O2max to whole body mass is thus not appropriate when comparing athletes of different body sizes (71). Although some of these values may be exacerbated by PED use, both the baseline level and plasticity of V̇O2max are under considerable genetic influence (15, 86, 135), and WorldTour levels can be reached without doping in those with sufficient genetic predisposition and appropriate stimulus.

Interestingly, there seems to be a physiological trade-off between efficiency and power, where adaptations towards the latter may attenuate the former (72, 113). This phenomenon was observed in Norwegian cyclist, Oskar Svendsen, who once had the highest V̇O2max ever recorded. Svendsen showed promise early by becoming junior time trial champion with less than three years of training and placing high in Tour de l’Avenir. However, despite an incredible V̇O2max of 96.7 ml/kg/min at 18 years of age, Svendsen never became a WorldTour rider. Although his early retirement at age 20 left his potential at the elite level largely unexplored, the reduction in cycling economy he experienced with increased training load could have been resolved as he matured as a rider, as cyclists appear to become more efficient over the span of their careers with little change in V̇O2max (112). If he remained active, Svendsen may eventually have been able to exploit his incredible baseline to reach the proverbial second speed in the modern peloton without chemical assistance. These insights into Svendsen’s physiological profile not only reveal some of the physiological complexities involved in high-level endurance performance, but also serve as an example of the scientific resources available to modern teams and riders that allows for a level of detail in the assessment and follow-up of athletes never seen before at that level of the sport.

Among the many training-related advances in the modern era is a more systematic approach to altitude training. Altitude-mediated erythropoiesis has long been recognized as an exposure that can produce adaptations that improves performance at sea level, as well as acclimatize athletes to sustain performance in hypobaric conditions. There are several ways to approach altitude training and care should be taken to avoid carrying the detrimental effects of prolonged hypoxic exposure, such as reduced cardiac output (Q̇) due to hypovolemia (117), into competition. Today, professional cycling teams rely on both experience as well as past and emerging research to use altitude as an important preparatory measure in various parts of the season. As the individual responses to hypoxic conditions can vary greatly (93), a large hematological response following real or simulated altitude exposure is an important attribute in modern riders. If done properly, altitude training can induce comparable hematological changes to rHuEPO use (table 2), making it a crucial performance-enhancing strategy in the modern peloton. Increasing [Hb] not only improves V̇O2max by improving the oxygen-carrying capacity of blood (43), it also enables sustained work at a higher fraction of maximal capacity (40) and faster V̇O2 kinetics (18), which can be hugely influential in a peloton with limited interindividual difference in V̇O2max.

A more recent strategy to legally induce hematological adaptations is heat acclimation. Prolonged exposure to heat is associated with both increased plasma volume, which can improve stroke volume and consequently Q̇ and V̇O2max, as well as an expansion of total hemoglobin mass (Hbmass) (91). In fact, light exercise in a heated environment five times per week has been shown to increase Hbmass by 3% – 11% in endurance athletes (90, 103, 107). Due to the logistical challenges and cost related to with altitude camp designs such as live high-train low, heat acclimation training may offer a more accessible strategy for riders and teams with less resources, or an additional stimulus to regular stays at altitude.
The mechanistic similarities between synthetic and natural causes of erythropoiesis makes it physiologically possible to harness the benefits of EPO without doping. Voet (132) recounts that pre-scandal Festina riders did not even bring EPO to altitude camps because it was going to be “useless”. Describing his first stay at altitude, formerly enhanced rider, Thomas Dekker, wrote that “[t]he altitude works its magic: the thin air jolts my body into producing extra red blood cells and the Swiss Tour is the first race in ages where I can stay with the pace on the climbs” (25, p. 135), expressing relief that he could hang with the peloton without PEDs. Michele Ferrari, Lance Armstrong’s coach during the height of his career, argues that the effects of EPO on hemoglobin concentration can be achieved through proper altitude training alone (31).

Every rider in the professional peloton possesses rare abilities as cyclists. Given that the sport selects for individuals with above average baseline values of [Hb] and Hct, it may not take much stimulus to maintain a high level. However, compared to simply administering rHuEPO, strategies such as altitude training and heat acclimation are more complex undertakings, partly because of potential drawbacks with that must be accounted for, such as transiently reduced Q̇ and altered dietary requirements. The financial cost associated with prolonged exposure to altitude and/or heat for a professional team is also a considerable barrier, as the finances of teams can differ greatly. In some cases, PED use might simply just be more practical than legal strategies, and not necessarily more powerful.

Improving oxygen delivery and utilization have been main training targets for cyclists throughout most of its history, while resistance training (RT) has been largely neglected. As the impact of both power output and oxygen consumption on cycling performance is intrinsically related to rider weight, maintaining a low body mass has been, and still is, imperative. However, RT with an emphasis on neural adaptations can substantially improve force-generating capacity and reduce the oxygen cost of exercise in athletes without adding unnecessary bulk (51-53, 140). It also helps maintain bone mineral density, which elite cyclists are prone to lose (48, 110). A recent study found that RT with traditional movements and individualized load improved bone mineral density and endurance performance in professional cyclists (126). Moreover, it appeared to improve strength, power, and body composition to a greater degree than short sprint training, a more traditional power training modality for cyclists, supporting the role of structured RT as a part of a professional cyclists overall training program. Indeed, evidence for the benefit of RT on cycling performance has been mounting over the past years (table 3) (62, 102, 104-106, 108, 109, 120, 131, 141). This has contributed to changing the way RT is perceived and applied in the.

An elite physiology is easier to perturb than improve. At the highest level of cycling, large adaptations to training are unlikely to occur in the short term. The full, natural potential of a rider can only be reached via the cumulative effects of proper training and recovery, both of which are highly dependent on proper fueling.
Nutrition, body composition, and supplementation

In Jørgen Leth’s classic documentary, “A Sunday in Hell”, Roger De Vlaeminck can be seen consuming a plate of meat with his team before setting out to defend his multiple Paris–Roubaix victories from the previous years in the 1976 edition, with the narrator explaining that “a rare steak is a good breakfast for what lies ahead” (67). This is in stark contrast to the low-residue diet often consumed by riders in the modern peloton (39). A low-residue diet is characterized by a very low fiber content, which can reduce rider weight and consequently improve race performance (36). This diet is usually combined with a very high carbohydrate intake throughout a race to ensure constant glucose availability, and the reduced satiety that can be associated with low-residue diets may even help a rider maintain energy intake during a race. The exact amount differs between riders, with numbers around 100 g of carbohydrate per hour being a rough estimate that may be exceeded considerably on hard days. The recognition of the added performance benefit of increased carbohydrate intake has given rise to the concept of gut training for athletes (56, 78). Racing hard for hours on end for multiple consecutive days with limited glucose availability is guaranteed to hamper performance compared to a well-fueled athlete; as red blood cells do not convert to adenosine triphosphate; blood doping cannot replace bioenergetic fuel.

There are some examples of riders that leveraged nutrition to increase their performance throughout history, such as Fausto Coppi (37), but in the modern era, all riders pay attention and have access to both nutritionists and chefs, both of which are roles that have become integral parts of professional teams. Riders also have access to more knowledge and tools, such as food apps powered by machine learning (121). The days of training hard during the day following by alcohol consumption in the evening and racing on the weekends are gone, but were reportedly common until fairly recently (25, 54). The culmination of evidence- and experience-based diets in professional cycling has led to better fueling strategies and lower body mass in the peloton and perhaps especially among the best riders.

Although described as “thin as rakes” (132, p. 63), the riders of the 90s were heavy by today’s standard. Laurent Fignon (32) explains that the importance of power-to-weight ratio did not become known among the riders before the mid-80s and that he, until that point, paid little attention to diet. Looking at the top 10 finishers of the TdF for the past four decades, starting with the latest edition, suggest that it is becoming more and more of a requirement for the overall GC placing (table 4). Notably, between 1992 and 2022, the average BMI of the top 10 decreased by 8.1%. This trend seems to generally hold across all Grand Tours for the past decades (118).

Supplements such as creatine and beta-alanine have been shown to improve endurance performance, including in cycling (7, 12, 21, 49, 127, 128). Creatine was introduced to the peloton in the mid-90s but was very expensive at the time. Riders who had access to it could consume up to 30 g the day before a long time trial or a mountain stage in hopes of a performance boost (132). Creatine and beta-alanine are now both affordable and widely used, alongside other supplements such as caffeine, electrolytes, nitrates, various vitamins, and minerals, as well as macronutrient supplements such as protein and carbohydrate.

In recent years, a lot of attention has been devoted to exogenous ketones. It is a contentious supplement that has been embraced some of the strongest teams while being recommended against by the Union Cycliste Internationale (UCI) and the Movement for Credible Cycling (MPCC). Ketones, or ketone bodies, are acetyl-CoA-derived metabolites that are produced by the liver under conditions with reduced glucose availability, such as low-carbohydrate diets, fasting, and during or after hard exercise. Ketone bodies such as β-hydroxybutyrate can spare glycogen by inhibiting glycolysis and acting as an alternative fuel in oxidative phosphorylation, which in turn can improve endurance (19). As with the research on other legal and illegal enhancement strategies, the degree to which exogenous ketones translates to improved exercise performance remains to be fully elucidated (24, 92, 94, 96, 125, 139). Although there may be potential drawbacks with isolated ketone supplementation (82), in conjunction with sodium bicarbonate, which is a weak base that has been used for some time in endurance sports (45), ketone supplementation has been shown to improve power output towards the end of a race simulation by 5% (95), although this effect may be unreliable and warrants further study (97).

Much of the hype surrounding some of the proposed effect of ketones as an energy substrate appears unwarranted, but emerging evidence suggest that it may have intriguing properties as a signaling molecule. A few years ago, it was shown that infusion of ketone bodies increased circulating EPO levels in healthy adults (63). The impact of ketones on EPO is supported by the observation that adherence to a ketogenic diet can increase [Hb] and Hct by ~3%, with the caveat this effect is within the biological variation of these markers (83). Recently, Evans et al. (30) found that ingestion of ketone monoester after cycling exercise increased serum EPO concentration, providing further evidence that it may be the signaling effects rather than nutritional value of ketone supplements confers the greatest performance benefit for professional cyclists.

Technology and equipment
Science tends to be reductionistic by necessity, whereas a cycling race is much more open-ended. There is, however, a certain cycling event that is performed in highly controlled conditions and relies heavily on technological advances that can serves as a good example of marginal gains in modern road cycling: the hour record. In 1972, Eddy Merckx, perhaps the greatest cyclist of all time, rode a distance of 49.431 km to set a new hour record for the first time since the 1950s. Twelve years later, Francesco Moser breached 50 km with an effort totaling 51.151 km, aided by disc wheels and a skin suit. The following years would see various innovative approaches by riders such as Graeme Obree and Chris Boardman, until the UCI decided to revise the rules in 1994 and again in 2014 (table 5). To set his records, Boardman worked closely with Brailsford’s predecessor in British Cycling, Peter Keen, and then later with Brailsford himself after his retirement, on what would be the beginning of British riders’ marginal gains on the track and later in the peloton (14).

From Voigt’s first attempt to Ganna’s latest, the modern hour record has been improved by over 11%. Although Ganna is a multiple World Time Trial champion and likely one of the most suitable riders to attempt the record, the last person to hold the record before him was Daniel Bigham, the only rider on the list that was never a WorldTour rider. Although an accomplished cyclist in his own right, Bigham’s record is a prime example of how far and fast you can get by maximizing the margins, with his record being set at an average power output approximately 100 watts less than Wiggins. Bigham himself puts his performance down to 50% physiology and 50% equipment (137). One of the main aspects Bigham exploited was aerodynamics; his coefficient of aerodynamic drag (CdA) was ~0.15, which is considerably below what is commonly seen in cyclists, including professionals (41).

Aerodynamics is not only relevant when riding fast around a velodrome for an hour, but also one of the most important things to consider when trying to ride fast on a bike in general. At a riding speed of about 54 km/h, close to the average on a flat TdF stage, approximately 90% of the total resistance is aerodynamic resistance (13, 44). Most of the resistance is caused by the rider himself, with common estimates ranging from 60-82% (74), and the rest by other factors such as equipment (22, 73, 77). The importance of minimizing CdA underlies much of the development of modern bike frames, wheels, handlebars, helmets, clothing, and more. In recent years, there has been less emphasis from manufacturers on getting their bikes down to the UCI weight limit of 6.8 kg in favor of more aerodynamic optimizations. This approach is supported by findings showing that simply opting for aerodynamic rather than light wheels will reduce climbing time on 3% – 6% grade hills (57). Steeper hills favor lighter wheels and WorldTour riders often make specific selections of wheelset, gear ratio, and even frameset based on race or stage profile. Some teams take it a step further, such as Jumbo-Visma, who use a portable aero sensor to measure exact wind conditions on race day and make equipment selections accordingly (81).

Since the inception of professional cycling there have been numerous technological advances and there is still a steady flow of innovations reaching the peloton. Some of these become widely adopted, such as aero-optimized gear; some are providing new alternatives without replacing old ones, such as tubeless tires (riders still use a variety of tubed, tubeless, and tubular tires); and others are replacing without immediately improving a function, such as disc brakes. Technology has also enabled more extensive monitoring of athletes, both on and more recently off the bike. For instance, several teams are now measuring body temperature and hydration status, and by analyzing the individual sodium composition sweat, can select the appropriate supplementary amount of sodium for each rider. During very hot days, riders are often seen wearing cooling gear to keep body temperature down. This can not only keep the riders comfortable, but may also benefit their performance in the race by lowering thermal strain (75).

Although professional cycling continues to benefit from science, technology, and engineering, the UCI have rules and regulations in place that ensures that cycling does not, for better or worse, stray too far away from its origins. Although these are subject to change based on new developments, they sometimes can become more restrictive, such as the recent ban on handlebars narrower than 350mm. Riders with the ability and resources to combine effective performance strategies from training, nutrition, recovery, and technology – perhaps especially strategies with small effects that are more likely to be ignored by others – may find themselves able to ride at a different speed than the rest of the peloton.

Merging the margins

Imagine a gifted and durable athlete with an exceptional ability to consume oxygen across all intensity domains, maintain a low body mass, effectively utilize lactate, absorb and recover from a high training load without injury or illness, handle training and race nutrition, thermoregulate in various climates, and respond well to altitude and heat exposure finding his or her way into cycling early in life. Suppose this young cyclist learns to maintain an aerodynamic position on the bike, pedal with an efficient cadence, move seamlessly through the peloton, avoid accidents, calmly handle the pressure of competition, and execute winning moves. Professional cycling selects for individuals with supraphysiological potential from environments that have allowed this potential to be expressed. Then, it awards those who have made it to the starting line and are able make as many performance determinants as possible come together on race day.

Increased professionalism at the highest level of the sport trickles down to the amateur and junior ranks, exposing up-and-coming cyclists to favorable conditions at an earlier age, leading to greater improvements in physiology, psychology, and race craft. Some riders may show incredible promise in some aspects of racing and struggle with others. Oskar Svendsen, V̇O2max world record holder, undoubtedly had one of the greatest physiological potentials ever seen in a rider. However, he admittedly also had technical and tactical challenges: “Cycling is a monotonous sport, yet so complex and driven by tactics that you won’t win races unless you deliver on all those qualities. I came into the sport with good physical qualities, but I struggled most with the tactics and patterns. I did learn a lot in my senior years on Team Joker though, even if I still had a long way to go. Descending down hills was also something I struggled a lot with, and it sapped much of my energy in races.” (99) Svendsen’s career serves as an example of how cycling is not only a physiological sport, but also technical, tactical, and psychological. Recently retired rider, Richie Porte, described former TdF GC winners Chris Froome and Tadej Pogačar as “psychological beasts” and noted that cycling has become increasingly scientific, which does not suit all riders (35). Modern riders are more methodical, data driven, and regimented than before. This reduces the human element of the sport, to the dismay of those claiming that this will increase predictability. Some researchers in the field have also warned against measuring just for the sake of measuring, and advise that rider data should serve a specific purpose (55).

The widely established routine of constant fueling during training and racing not only acutely increase work capacity but also improves subsequent recovery by preventing the rider from becoming completely depleted. This is in stark contrast to the days when reaching for your bottle during a hard training ride, even if it only contained water, was considered a weakness. Paul Köchli, former coach of riders such as Bernard Hinault and Greg Lemond, once said that the art of cycling is to do the right thing at the right moment (27). This is true not only in the context of a race, but indeed for the professional cyclist’s career as a whole. The effects of proper training, nutrition, and recovery accumulate not only throughout a season, but a whole career, benefitting those who consistently do the right things from early on.

Conclusion and future perspectives

In some ways, modern approaches to improving cycling performance represent a first principles approach to cycling and a fundamental challenge of conventions, within the rules and regulations of UCI. It seems to have restored some of the faith in the sport that was once lost with various doping scandals. Given the measurable impacts of legal performance-enhancing strategies, many of which were previously unknown or overlooked, it could be argued that combining these effects can bring a clean rider’s performance close to, or even surpass, that of an enhanced cyclist, assuming a gifted baseline and sufficient degree of adaptability.

Suggesting that it is possible to win at the highest level in cycling without the use of PEDs is not the same as claiming that the sport is completely clean. As others have pointed out, periods that have previously been perceived as clean have later been shown to be anything but (26). This paper covers some of the key legal advances in road cycling that has contributed to elite performances in the modern peloton, while at the same time acknowledging that illegal strategies may still be present.

Much of what was once considered “marginal gains” have now become common in all professional cycling teams. This represents a shift from a culture of doping to a culture of exhaustive continuous improvement, a lot of which is kept under wraps and some that may even be considered a grey area. Effective anti-doping measures contribute to a more level playing field, but not entirely level. The teams with the most resources often get the most talented riders, allowing them to combine the greatest potential with the best strategies. And even still, there are some who favor optimizing riders and their equipment for weight rather than aerodynamics, ignoring the latter to the extent that it becomes a considerable detriment. In an era of professional cycling where individual performances are influenced by a multitude of human and nonhuman factors, which in combination can have profound effects, the existence of two-speed cycling in a clean peloton is not only logical – it should be expected.

Acknowledgments

This work was supported by the Norwegian University of Science and Technology (NTNU). The author would like to thank Dr. Endre T. Nesse and Dr. Fabio G. Laginestra for their comments and feedback on the manuscript.

REFERENCES

  1. Annaheim, S., Jacob, M., Krafft, A., Breymann, C., Rehm, M., & Boutellier, U. (2016). RhEPO improves time to exhaustion by non-hematopoietic factors in humans. European Journal of Applied Physiology, 116(3), 623-633. https://doi.org/10.1007/s00421-015-3322-6
  2. Arnold, R. (2018, 18 January 2018). Egan Bernal: A VO2max of 91… “it’s just a number”. Ride Media. Retrieved 10 January 2023 from https://www.ridemedia.com.au/features/egan-bernal-vo2max-91-just-number
  3. Astolfi, T., Crettaz von Roten, F., Kayser, B., Saugy, M., & Faiss, R. (2021). The Influence of Training Load on Hematological Athlete Biological Passport Variables in Elite Cyclists. Frontiers in Sports and Active Living, 3. https://doi.org/10.3389/fspor.2021.618285
  4. Attia, P., & San-Millán, I. (2022, 1 April 2022). How often should you be doing Zone 5 training? | Iñigo San-Millán, Ph.D. & Peter Attia, M.D. YouTube. Retrieved 10 January 2023 from https://www.youtube.com/watch?v=xuqURs4auc8
  5. Aubel, O., Lefèvre, B., Le Goff, J.-M., & Taverna, N. (2018). Doping risk and career turning points in male elite road cycling (2005–2016). Journal of Science and Medicine in Sport, 21(10), 994-998. https://doi.org/10.1016/j.jsams.2018.03.003
  6. Aubel, O., Lefèvre, B., Le Goff, J. M., & Taverna, N. (2019). The team effect on doping in professional male road cycling (2005-2016). Scandinavian Journal of Medicine & Science in Sports, 29(4), 615-622. https://doi.org/10.1111/sms.13384
  7. Baguet, A., Koppo, K., Pottier, A., & Derave, W. (2010). Beta-alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. Eur J Appl Physiol, 108(3), 495-503. https://doi.org/10.1007/s00421-009-1225-0
  8. Bailey, M. (2016, 6 May 2016). Greg LeMond: Interview. Cyclist. Retrieved 10 January 2023 from https://www.cyclist.co.uk/in-depth/115/greg-lemond-interview
  9. Bailey, M. (2016, 31 May 2016). Miguel Indurain: the record Tour winner. Cyclist. Retrieved 10 January 2023 from https://www.cyclist.co.uk/in-depth/423/miguel-indurain-the-record-tour-winner
  10. Bell, P., Ten Have, C., & Lauchs, M. (2016). A case study analysis of a sophisticated sports doping network: Lance Armstrong and the USPS Team. International Journal of Law, Crime and Justice, 46, 57-68. https://doi.org/10.1016/j.ijlcj.2016.03.001
  11. Bell, P. G., Furber, M. J., van Someren, K. A., Antón-Solanas, A., & Swart, J. (2017). The Physiological Profile of a Multiple Tour de France Winning Cyclist. Med Sci Sports Exerc, 49(1), 115-123. https://doi.org/10.1249/mss.0000000000001068
  12. Bemben, M. G., & Lamont, H. S. (2005). Creatine supplementation and exercise performance: recent findings. Sports Med, 35(2), 107-125. https://doi.org/10.2165/00007256-200535020-00002
  13. Blocken, B., van Druenen, T., Toparlar, Y., & Andrianne, T. (2018). Aerodynamic analysis of different cyclist hill descent positions. Journal of Wind Engineering and Industrial Aerodynamics, 181, 27-45. https://doi.org/10.1016/j.jweia.2018.08.010
  14. Boardman, C. (2017). Triumphs and Turbulence: My Autobiography. Ebury Press.
  15. Bouchard, C., An, P., Rice, T., Skinner, J. S., Wilmore, J. H., Gagnon, J., Pérusse, L., Leon, A. S., & Rao, D. C. (1999). Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol (1985), 87(3), 1003-1008. https://doi.org/10.1152/jappl.1999.87.3.1003
  16. Bowers, L. D. (1998). Athletic drug testing. Clin Sports Med, 17(2), 299-318. https://doi.org/10.1016/s0278-5919(05)70082-x
  17. Chicharro, J. L., Hoyos, J., Bandrés, F., Terrados, N., Fernández, B., & Lucía, A. (2001). Thyroid hormone levels during a 3-week professional road cycling competition. Horm Res, 56(5-6), 159-164. https://doi.org/10.1159/000048112
  18. Connes, P., Perrey, S., Varray, A., Préfaut, C., & Caillaud, C. (2003). Faster oxygen uptake kinetics at the onset of submaximal cycling exercise following 4 weeks recombinant human erythropoietin (r-HuEPO) treatment. Pflugers Arch, 447(2), 231-238. https://doi.org/10.1007/s00424-003-1174-0
  19. Cox, Pete J., Kirk, T., Ashmore, T., Willerton, K., Evans, R., Smith, A., Murray, Andrew J., Stubbs, B., West, J., McLure, Stewart W., King, M. T., Dodd, Michael S., Holloway, C., Neubauer, S., Drawer, S., Veech, Richard L., Griffin, Julian L., & Clarke, K. (2016). Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes. Cell Metabolism, 24(2), 256-268. https://doi.org/10.1016/j.cmet.2016.07.010
  20. Coyle, E. F. (2005). Improved muscular efficiency displayed as Tour de France champion matures. J Appl Physiol (1985), 98(6), 2191-2196. https://doi.org/10.1152/japplphysiol.00216.2005
  21. Crisafulli, D. L., Buddhadev, H. H., Brilla, L. R., Chalmers, G. R., Suprak, D. N., & San Juan, J. G. (2018). Creatine-electrolyte supplementation improves repeated sprint cycling performance: A double blind randomized control study. J Int Soc Sports Nutr, 15, 21. https://doi.org/10.1186/s12970-018-0226-y
  22. Crouch, T. N., Burton, D., LaBry, Z. A., & Blair, K. B. (2017). Riding against the wind: a review of competition cycling aerodynamics. Sports Engineering, 20(2), 81-110. https://doi.org/10.1007/s12283-017-0234-1
  23. CyclingTips. (2016, 15 August 2016). Chris Froome’s lab results analysed: just how good is the three-time Tour de France champion? CyclingTips. Retrieved 10 January 2023 from https://cyclingtips.com/2016/08/chris-froomes-lab-results-analysed-just-how-good-is-the-three-time-tour-de-france-champion
  24. Dearlove, D. J., Harrison, O. K., Hodson, L., Jefferson, A., Clarke, K., & Cox, P. J. (2021). The Effect of Blood Ketone Concentration and Exercise Intensity on Exogenous Ketone Oxidation Rates in Athletes. Medicine & Science in Sports & Exercise, 53(3). https://doi.org/10.1249/MSS.0000000000002502
  25. Dekker, T. (2018). The Descent. Ebury Press.
  26. Dimeo, P. (2014). Why Lance Armstrong? Historical Context and Key Turning Points in the ‘Cleaning Up’ of Professional Cycling. The International Journal of the History of Sport, 31(8), 951-968. https://doi.org/10.1080/09523367.2013.879858
  27. Dower, J. (2014). Slaying the Badger ESPN.
  28. Durussel, J., Haile, D. W., Mooses, K., Daskalaki, E., Beattie, W., Mooses, M., Mekonen, W., Ongaro, N., Anjila, E., Patel, R. K., Padmanabhan, N., McBride, M. W., McClure, J. D., & Pitsiladis, Y. P. (2016). Blood transcriptional signature of recombinant human erythropoietin administration and implications for antidoping strategies. Physiological Genomics, 48(3), 202-209. https://doi.org/10.1152/physiolgenomics.00108.2015
  29. Edworthy, S., & Brailsford, D. (2012). 21 Days to Glory: The Official Team Sky Book of the 2012 Tour de France. HarperSport.
  30. Evans, E., Walhin, J.-P., Hengist, A., Betts, J. A., Dearlove, D. J., & Gonzalez, J. T. (2022). Ketone monoester ingestion increases post-exercise serum erythropoietin concentrations in healthy men. American Journal of Physiology-Endocrinology and Metabolism. https://doi.org/10.1152/ajpendo.00264.2022
  31. Ferrari, M. (2013, 22 January 2013). A bit of history. 53×12. Retrieved 27 December 2022 from https://www.53×12.com/a-bit-of-history
  32. Fignon, L. (2010). We Were Young and Carefree. Yellow Jersey Press.
  33. Fincoeur, B. (2009). Lutte antidopage et cyclisme à deux vitesses: Évolution du rapport au dopage chez les cyclistes belges depuis l’affaire Festina. Revue internationale de criminologie et de police technique, 62.
  34. Fincoeur, B., Gleaves, J., & Ohl, F. (2019). Doping in Cycling: Interdisciplinary Perspectives. Routledge.
  35. Fletcher, P. (2022, 23 December 2022). Richie Porte: Pogacar and Froome are psychological beasts. Cyclingnews. Retrieved 18 January 2023 from https://www.cyclingnews.com/news/richie-porte-pogacar-and-froome-are-psychological-beasts
  36. Foo, W. L., Harrison, J. D., Mhizha, F. T., Langan-Evans, C., Morton, J. P., Pugh, J. N., & Areta, J. L. (2022). A Short-Term Low-Fiber Diet Reduces Body Mass in Healthy Young Men: Implications for Weight-Sensitive Sports. Int J Sport Nutr Exerc Metab, 32(4), 256-264. https://doi.org/10.1123/ijsnem.2021-0324
  37. Fotheringham, W. (2010). Fallen Angel: The Passion of Fausto Coppi. Yellow Jersey Press.
  38. Fotheringham, W. (2013). Half Man, Half Bike: The Life of Eddy Merckx, Cycling’s Greatest Champion. Yellow Jersey Press.
  39. Freeman, R. (2018). The Line: Where Medicine and Sport Collide. Wildfire.
  40. Fritsch, J., Winter, U. J., Reupke, I., Gitt, A. K., Berge, P. G., & Hilger, H. H. (1993). [Effect of a single blood donation on ergo-spirometrically determined cardiopulmonary performance capacity of young healthy probands]. Z Kardiol, 82(7), 425-431. (Einfluss einer einmaligen Blutspende auf die ergospirometrisch bestimmte kardiopulmonale Leistungsfähigkeit bei jungen gesunden Probanden.)
  41. García-López, J., Rodríguez-Marroyo, J. A., Juneau, C.-E., Peleteiro, J., Martínez, A. C., & Villa, J. G. (2008). Reference values and improvement of aerodynamic drag in professional cyclists. Journal of Sports Sciences, 26(3), 277-286. https://doi.org/10.1080/02640410701501697
  42. Gifford, B. (July 2008). Greg LeMond vs. The World. Men’s Journal. Retrieved 10 January 2023 from https://www.mensjournal.com/health-fitness/greg-lemond-vs-the-world-20130318
  43. Gledhill, N., Warburton, D., & Jamnik, V. (1999). Haemoglobin, blood volume, cardiac function, and aerobic power. Can J Appl Physiol, 24(1), 54-65. https://doi.org/10.1139/h99-006
  44. Grappe, F., Candau, R., Belli, A., & Rouillon, J. (1298). Aerodynamic drag in field cycling with special reference to the Obree’s position. Ergonomics, December 1, 1299-1311. https://doi.org/10.1080/001401397187388
  45. Grgic, J., Pedisic, Z., Saunders, B., Artioli, G. G., Schoenfeld, B. J., McKenna, M. J., Bishop, D. J., Kreider, R. B., Stout, J. R., Kalman, D. S., Arent, S. M., VanDusseldorp, T. A., Lopez, H. L., Ziegenfuss, T. N., Burke, L. M., Antonio, J., & Campbell, B. I. (2021). International Society of Sports Nutrition position stand: sodium bicarbonate and exercise performance. J Int Soc Sports Nutr, 18(1), 61. https://doi.org/10.1186/s12970-021-00458-w
  46. Hamilton, T., & Coyle, D. (2012). The Secret Race: Inside the Hidden World of the Tour de France. Bantam Press.
  47. Heuberger, J. A. A. C., Rotmans, J. I., Gal, P., Stuurman, F. E., van ‘t Westende, J., Post, T. E., Daniels, J. M. A., Moerland, M., van Veldhoven, P. L. J., de Kam, M. L., Ram, H., de Hon, O., Posthuma, J. J., Burggraaf, J., & Cohen, A. F. (2017). Effects of erythropoietin on cycling performance of well trained cyclists: a double-blind, randomised, placebo-controlled trial. The Lancet Haematology, 4(8), e374-e386. https://doi.org/10.1016/S2352-3026(17)30105-9
  48. Hilkens, L., van Schijndel, N., Weijer, V., Boerboom, M., van der Burg, E., Peters, V., Kempers, R., Bons, J., van Loon, L. J. C., & van Dijk, J.-W. (2022). Low Bone Mineral Density and Associated Risk Factors in Elite Cyclists at Different Stages of a Professional Cycling Career. Medicine & Science in Sports & Exercise. https://doi.org/10.1249/MSS.0000000000003113
  49. Hill, C. A., Harris, R. C., Kim, H. J., Harris, B. D., Sale, C., Boobis, L. H., Kim, C. K., & Wise, J. A. (2007). Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids, 32(2), 225-233. https://doi.org/10.1007/s00726-006-0364-4
  50. Hincapie, G., & Hummer, C. (2014). The Loyal Lieutenant: Leading Out Lance and Pushing Through the Pain on the Rocky Road to Paris. HarperCollins.
  51. Hoff, J., Berdahl, G. O., & Bråten, S. (2001). Jumping height development and body weight considerations in ski jumping. In Science and skiing II : Second International Congress on Science and Skiing ; St. Christoph a. Arlberg, Austria, January 9-15, 2000. Hamburg: Kovač (Verlag), 2001, S. 403-412, Lit.
  52. Hoff, J., Gran, A., & Helgerud, J. (2002). Maximal strength training improves aerobic endurance performance. Scand J Med Sci Sports, 12(5), 288-295. https://doi.org/10.1034/j.1600-0838.2002.01140.x
  53. Hoff, J., Helgerud, J., & Wisløff, U. (1999). Maximal strength training improves work economy in trained female cross-country skiers. Med Sci Sports Exerc, 31(6), 870-877. https://doi.org/10.1097/00005768-199906000-00016
  54. Hushovd, T., & Ravnåsen, J. (2014). Thor. Schibsted Forlag AS.
  55. Javaloyes, A., & Mateo-March, M. (2022). Only what is necessary: The use of technology in cycling and concerns with its selection and use. Journal of Science & Cycling, 11(3), 1-2. https://doi.org/10.28985/1322.jsc.16
  56. Jeukendrup, A. E. (2017). Training the Gut for Athletes. Sports Med, 47(Suppl 1), 101-110. https://doi.org/10.1007/s40279-017-0690-6
  57. Jeukendrup, A. E., & Martin, J. (2001). Improving Cycling Performance. Sports Medicine, 31(7), 559-569. https://doi.org/10.2165/00007256-200131070-00009
  58. Johnson, M. (2016). Spitting in the Soup: Inside the Dirty Game of Doping in Sports. VeloPress
  59. Kimmage, P. (2007). Rough Ride. Yellow Jersey Press.
  60. Klein, H. G. (1985). Blood transfusion and athletics. Games people play. N Engl J Med, 312(13), 854-856. https://doi.org/10.1056/nejm198503283121311
  61. Kolata, G. (2005, 24 July 2005). Super, Sure, but Not More Than Human. The New York Times. Retrieved 10 January 2023 from https://www.nytimes.com/2005/07/24/weekinreview/super-sure-but-not-more-than-human.html
  62. Kordi, M., Folland, J. P., Goodall, S., Menzies, C., Patel, T. S., Evans, M., Thomas, K., & Howatson, G. (2020). Cycling-specific isometric resistance training improves peak power output in elite sprint cyclists. Scand J Med Sci Sports, 30(9), 1594-1604. https://doi.org/10.1111/sms.13742
  63. Lauritsen, K. M., Søndergaard, E., Svart, M., Møller, N., & Gormsen, L. C. (2018). Ketone Body Infusion Increases Circulating Erythropoietin and Bone Marrow Glucose Uptake. Diabetes Care, 41(12), e152-e154. https://doi.org/10.2337/dc18-1421
  64. Lentillon-Kaestner, V., Hagger, M., & Hardcastle, S. (2011). Health and doping in elite-level cycling. Scandinavian Journal of Medicine & Science in Sports, 22, 596-606. https://doi.org/10.1111/j.1600-0838.2010.01281.x
  65. Leo, P., Simon, D., Hovorka, M., Lawley, J., & Mujika, I. (2022). Elite versus non-elite cyclist – Stepping up to the international/elite ranks from U23 cycling. Journal of Sports Sciences, 40(16), 1874-1884. https://doi.org/10.1080/02640414.2022.2117394
  66. Leo, P., Spragg, J., Mujika, I., Giorgi, A., Lorang, D., Simon, D., & Lawley, J. S. (2021). Power Profiling, Workload Characteristics, and Race Performance of U23 and Professional Cyclists During the Multistage Race Tour of the Alps. International Journal of Sports Physiology and Performance, 16(8), 1089-1095. https://doi.org/10.1123/ijspp.2020-0381
  67. Leth, J. (1977). A Sunday in Hell Steen Herdel Filmproduktion.
  68. Levine, B. D., & Stray-Gundersen, J. (1997). “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol (1985), 83(1), 102-112. https://doi.org/10.1152/jappl.1997.83.1.102
  69. Ljungqvist, A. (2017). Brief History of Anti-Doping. Med Sport Sci, 62, 1-10. https://doi.org/10.1159/000460680
  70. Llamas, F. (2016, 24 January 2016). La ‘bestia’ que viene. Marca. Retrieved 10 January 2023 from https://www.marca.com/ciclismo/2016/01/24/56a4fa71ca474159048b45c4.html
  71. Lolli, L., Batterham, A. M., Weston, K. L., & Atkinson, G. (2017). Size Exponents for Scaling Maximal Oxygen Uptake in Over 6500 Humans: A Systematic Review and Meta-Analysis. Sports Med, 47(7), 1405-1419. https://doi.org/10.1007/s40279-016-0655-1
  72. Lucía, A., Hoyos, J., Pérez, M., Santalla, A., & Chicharro, J. L. (2002). Inverse relationship between V̇O2max and economy/efficiency in world-class cyclists. Medicine & Science in Sports & Exercise, 34(12). https://doi.org/10.1249/01.MSS.0000039306.92778.DF
  73. Lukes, R. A., Chin, S. B., & Haake, S. J. (2005). The understanding and development of cycling aerodynamics. Sports Engineering, 8(2), 59-74. https://doi.org/10.1007/BF02844004
  74. Malizia, F., Druenen, T., & Blocken, B. (2021). Impact of wheel rotation on the aerodynamic drag of a time trial cyclist. Sports Engineering, 24. https://doi.org/10.1007/s12283-021-00341-6
  75. Marino, F. E. (2002). Methods, advantages, and limitations of body cooling for exercise performance. British Journal of Sports Medicine, 36(2), 89. https://doi.org/10.1136/bjsm.36.2.89
  76. Martin, D. T., Quod, M. J., & Gore, C. J. (2005). Has Armstrong’s cycle efficiency improved? Journal of Applied Physiology, 99(4), 1628-1629. https://doi.org/10.1152/japplphysiol.00507.2005
  77. Martin, J. C., Milliken, D. L., Cobb, J. E., McFadden, K. L., & Coggan, A. R. (1998). Validation of a Mathematical Model for Road Cycling Power. Journal of Applied Biomechanics, 14(3), 276-291. https://doi.org/10.1123/jab.14.3.276
  78. Martinez, I. G., Mika, A. S., Biesiekierski, J. R., & Costa, R. J. S. (2023). The Effect of Gut-Training and Feeding-Challenge on Markers of Gastrointestinal Status in Response to Endurance Exercise: A Systematic Literature Review. Sports Med, 53(6), 1175-1200. https://doi.org/10.1007/s40279-023-01841-0
  79. Mateo-March, M., Valenzuela, P. L., Muriel, X., Gandia-Soriano, A., Zabala, M., Lucia, A., Pallarés, J., & Barranco-Gil, D. (2022). The Record Power Profile of Male Professional Cyclists: Fatigue Matters. International Journal of Sports Physiology and Performance, 17, 1-6. https://doi.org/10.1123/ijspp.2021-0403
  80. Maunder, E., Seiler, S., Mildenhall, M. J., Kilding, A. E., & Plews, D. J. (2021). The Importance of ‘Durability’ in the Physiological Profiling of Endurance Athletes. Sports Medicine, 51(8), 1619-1628. https://doi.org/10.1007/s40279-021-01459-0
  81. Mc Laughlin, R. (2022, 3 August 2022). Has Aerosensor finally cracked at-home aero testing? CyclingTips. Retrieved 17 January 2023 from https://cyclingtips.com/2022/08/has-aerosensor-finally-cracked-at-home-aero-testing
  82. McCarthy, D. G., Bostad, W., Powley, F. J., Little, J. P., Richards, D. L., & Gibala, M. J. (2021). Increased cardiorespiratory stress during submaximal cycling after ketone monoester ingestion in endurance-trained adults. Appl Physiol Nutr Metab, 46(8), 986-993. https://doi.org/10.1139/apnm-2020-0999
  83. McKay, A. K. A., Peeling, P., Pyne, D. B., Welvaert, M., Tee, N., Leckey, J. J., Sharma, A. P., Ross, M. L. R., Garvican-Lewis, L. A., Swinkels, D. W., Laarakkers, C. M., & Burke, L. M. (2019). Chronic Adherence to a Ketogenic Diet Modifies Iron Metabolism in Elite Athletes. Medicine & Science in Sports & Exercise, 51(3). https://doi.org/10.1249/MSS.0000000000001816
  84. Meeuwsen, T., Hendriksen, I. J. M., & Holewijn, M. (2001). Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. European Journal of Applied Physiology, 84(4), 283-290. https://doi.org/10.1007/s004210000363
  85. Millar, D. (2012). Racing Through the Dark. Orion Publishing Group.
  86. Miyamoto-Mikami, E., Zempo, H., Fuku, N., Kikuchi, N., Miyachi, M., & Murakami, H. (2018). Heritability estimates of endurance-related phenotypes: A systematic review and meta-analysis. Scandinavian Journal of Medicine & Science in Sports, 28(3), 834-845. https://doi.org/10.1111/sms.12958
  87. Moore, R. (2012). Sky’s the Limit: British Cycling’s Quest to Conquer the Tour de France. HarperSport.
  88. Movement for Credible Cycling. (2022). Credibility figures: Continental teams tarnished [Internet; cited 2023 August 2]. Retrieved from: https://www.mpcc.fr/en/credibility-figures-continental-teams-tarnished/.
  89. Mørkeberg, J. S., Belhage, B., & Damsgaard, R. (2009). Changes in blood values in elite cyclist. Int J Sports Med, 30(2), 130-138. https://doi.org/10.1055/s-2008-1038842
  90. Nybo, L., Rønnestad, B., & Lundby, C. (2022). High or hot-Perspectives on altitude camps and heat-acclimation training as preparation for prolonged stage races. Scand J Med Sci Sports. https://doi.org/10.1111/sms.14268
  91. Oberholzer, L., Siebenmann, C., Mikkelsen, C. J., Junge, N., Piil, J. F., Morris, N. B., Goetze, J. P., Meinild Lundby, A.-K., Nybo, L., & Lundby, C. (2019). Hematological Adaptations to Prolonged Heat Acclimation in Endurance-Trained Males. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.01379
  92. Pinckaers, P. J., Churchward-Venne, T. A., Bailey, D., & van Loon, L. J. (2017). Ketone Bodies and Exercise Performance: The Next Magic Bullet or Merely Hype? Sports Med, 47(3), 383-391. https://doi.org/10.1007/s40279-016-0577-y
  93. Płoszczyca, K., Langfort, J., & Czuba, M. (2018). The Effects of Altitude Training on Erythropoietic Response and Hematological Variables in Adult Athletes: A Narrative Review. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.00375
  94. Poffé, C., Ramaekers, M., Bogaerts, S., & Hespel, P. (2020). Exogenous ketosis impacts neither performance nor muscle glycogen breakdown in prolonged endurance exercise. Journal of Applied Physiology, 128(6), 1643-1653. https://doi.org/10.1152/japplphysiol.00092.2020
  95. Poffé, C., Ramaekers, M., Bogaerts, S., & Hespel, P. (2021). Bicarbonate Unlocks the Ergogenic Action of Ketone Monoester Intake in Endurance Exercise. Medicine & Science in Sports & Exercise, 53(2). https://doi.org/10.1249/MSS.0000000000002467
  96. Poffé, C., Robberechts, R., Podlogar, T., Kusters, M., Debevec, T., & Hespel, P. (2021). Exogenous ketosis increases blood and muscle oxygenation but not performance during exercise in hypoxia. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 321(6), R844-R857. https://doi.org/10.1152/ajpregu.00198.2021
  97. Poffé, C., Wyns, F., Ramaekers, M., & Hespel, P. (2021). Exogenous Ketosis Impairs 30-min Time-Trial Performance Independent of Bicarbonate Supplementation. Med Sci Sports Exerc, 53(5), 1068-1078. https://doi.org/10.1249/mss.0000000000002552
  98. Rasmussen, M., & Wivel, K. (2013). Gul Feber. People’sPress.
  99. Redford, P. (2018, 2 April 2018). The Fittest Human Ever Quit Sports, Found Happiness. Deadspin Retrieved 10 January 2023 from https://deadspin.com/the-fittest-human-ever-quit-sports-found-happiness-1823998288
  100. Riis, B., & Pedersen, L. S. (2012). Riis: Stages Of Light And Dark. Vision Sports Publishing.
  101. Robinson, N., Giraud, S., Saudan, C., Baume, N., Avois, L., Mangin, P., & Saugy, M. (2006). Erythropoietin and blood doping. Br J Sports Med, 40 Suppl 1(Suppl 1), i30-34. https://doi.org/10.1136/bjsm.2006.027532
  102. Rønnestad, B. (2022). Case Report: Effects of Multiple Seasons of Heavy Strength Training on Muscle Strength and Cycling Sprint Power in Elite Cyclists. Front Sports Act Living, 4, 860685. https://doi.org/10.3389/fspor.2022.860685
  103. Rønnestad, B., Hamarsland, H., Hansen, J., Holen, E., Montero, D., Whist, J. E., & Lundby, C. (2021). Five weeks of heat training increases haemoglobin mass in elite cyclists. Exp Physiol, 106(1), 316-327. https://doi.org/10.1113/ep088544
  104. Rønnestad, B., Hansen, E. A., & Raastad, T. (2010). Effect of heavy strength training on thigh muscle cross-sectional area, performance determinants, and performance in well-trained cyclists. Eur J Appl Physiol, 108(5), 965-975. https://doi.org/10.1007/s00421-009-1307-z
  105. Rønnestad, B., Hansen, E. A., & Raastad, T. (2010). In-season strength maintenance training increases well-trained cyclists’ performance. Eur J Appl Physiol, 110(6), 1269-1282. https://doi.org/10.1007/s00421-010-1622-4
  106. Rønnestad, B., Hansen, E. A., & Raastad, T. (2011). Strength training improves 5-min all-out performance following 185 min of cycling. Scandinavian Journal of Medicine & Science in Sports, 21(2), 250-259. https://doi.org/10.1111/j.1600-0838.2009.01035.x
  107. Rønnestad, B., Hansen, J., Bonne, T., & Lundby, C. (2021). Case Report: Heat Suit Training May Increase Hemoglobin Mass in Elite Athletes. International Journal of Sports Physiology and Performance, 17, 1-5. https://doi.org/10.1123/ijspp.2021-0033
  108. Rønnestad, B., Hansen, J., Hollan, I., & Ellefsen, S. (2015). Strength training improves performance and pedaling characteristics in elite cyclists. Scand J Med Sci Sports, 25(1), e89-98. https://doi.org/10.1111/sms.12257
  109. Rønnestad, B., Hansen, J., & Nygaard, H. (2017). 10 weeks of heavy strength training improves performance-related measurements in elite cyclists. J Sports Sci, 35(14), 1435-1441. https://doi.org/10.1080/02640414.2016.1215499
  110. Sabo, D., Reiter, A., Pfeil, J., Güssbacher, A., & Niethard, F. U. (1996). [Modification of bone quality by extreme physical stress. Bone density measurements in high-performance athletes using dual-energy x-ray absorptiometry]. Z Orthop Ihre Grenzgeb, 134(1), 1-6. https://doi.org/10.1055/s-2008-1037409 (Beeinflussung der Knochenqualität durch extreme körperliche Belastung. Knochendichtemessungen bei Hochleistungssportlern mit der Dual-Energie-Röntgen-Absorptionmetrie.)
  111. Sánchez-Muñoz, C., Mateo-March, M., Muros, J. J., Javaloyes, A., & Zabala, M. (2022). Anthropometric characteristics according to the role performed by World Tour road cyclists for their team. European Journal of Sport Science, 1-8. https://doi.org/10.1080/17461391.2022.2132879
  112. Santalla, A., Naranjo, J., & Terrados, N. (2009). Muscle efficiency improves over time in world-class cyclists. Med Sci Sports Exerc, 41(5), 1096-1101. https://doi.org/10.1249/MSS.0b013e318191c802
  113. Schiffer, T. A., Ekblom, B., Lundberg, J. O., Weitzberg, E., & Larsen, F. J. (2014). Dynamic regulation of metabolic efficiency explains tolerance to acute hypoxia in humans. The FASEB Journal, 28(10), 4303-4311. https://doi.org/10.1096/fj.14-251710
  114. Schuler, B., Thomsen, J. J., Gassmann, M., & Lundby, C. (2007). Timing the arrival at 2340 m altitude for aerobic performance. Scand J Med Sci Sports, 17(5), 588-594. https://doi.org/10.1111/j.1600-0838.2006.00611.x
  115. Seznec, J. C. (2002). Toxicomanie et cyclisme professionnel. Annales Médico-psychologiques, revue psychiatrique, 160(1), 72-76. https://doi.org/10.1016/S0003-4487(01)00133-0
  116. Sgrò, P., Sansone, M., Sansone, A., Romanelli, F., & Di Luigi, L. (2018). Effects of erythropoietin abuse on exercise performance. The Physician and Sportsmedicine, 46(1), 105-115. https://doi.org/10.1080/00913847.2018.1402663
  117. Siebenmann, C., Hug, M., Keiser, S., Müller, A., van Lieshout, J., Rasmussen, P., & Lundby, C. (2013). Hypovolemia explains the reduced stroke volume at altitude. Physiol Rep, 1(5), e00094. https://doi.org/10.1002/phy2.94
  118. Smith, A., Wijnkoop, M. v., Colangelo, J., Buadze, A., & Liebrenz, M. (2023). Body Mass Index trends in men’s Grand Tour cycling events from 1992-2022: Implications for athlete wellbeing and regulatory frameworks. Research Square. https://doi.org/10.21203/rs.3.rs-2568920/v1
  119. Stray-Gundersen, J., Chapman, R. F., & Levine, B. D. (2001). “Living high-training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol (1985), 91(3), 1113-1120. https://doi.org/10.1152/jappl.2001.91.3.1113
  120. Sunde, A., Støren, Ø., Bjerkaas, M., Larsen, M. H., Hoff, J., & Helgerud, J. (2010). Maximal Strength Training Improves Cycling Economy in Competitive Cyclists. The Journal of Strength & Conditioning Research, 24(8). https://doi.org/10.1519/JSC.0b013e3181aeb16a
  121. Team Jumbo-Visma. (2021, 21 January 2021). Must-have for all riders: the Jumbo Foodcoach app. TeamJumboVisma.com. Retrieved 16 January 2023 from https://www.teamjumbovisma.com/article/material/must-have-for-all-riders-the-jumbo-foodcoach-app/
  122. Thewlis, T. (2023). Chords to cols: How Jonas Vingegaard went from guitars to Grand Tours [Internet]. 2023 July 6 [cited 2023 August 2]; Retrieved from: https://www.cyclingweekly.com/racing/holidays-in-the-mountains-to-hard-graft-in-hantsholm-harbour-the-making-of-jonas-vingegaard.
  123. Trinh, K. V., Diep, D., Chen, K. J. Q., Huang, L., & Gulenko, O. (2020). Effect of erythropoietin on athletic performance: a systematic review and meta-analysis. BMJ Open Sport Exerc Med, 6(1), e000716. https://doi.org/10.1136/bmjsem-2019-000716
  124. Valenzuela, P. L., Alejo, L. B., Ozcoidi, L. M., Lucia, A., Santalla, A., & Barranco-Gil, D. (2023). Durability in Professional Cyclists: A Field Study. Int J Sports Physiol Perform, 18(1), 99-103. https://doi.org/10.1123/ijspp.2022-0202
  125. Valenzuela, P. L., Castillo-García, A., Morales, J. S., & Lucia, A. (2021). Perspective: Ketone Supplementation in Sports-Does It Work? Adv Nutr, 12(2), 305-315. https://doi.org/10.1093/advances/nmaa130
  126. Valenzuela, P. L., Gil-Cabrera, J., Talavera, E., Alejo, L. B., Montalvo-Pérez, A., Rincón-Castanedo, C., Rodríguez-Hernández, I., Lucia, A., & Barranco-Gil, D. (2021). On- Versus Off-Bike Power Training in Professional Cyclists: A Randomized Controlled Trial. Int J Sports Physiol Perform, 16(5), 674-681. https://doi.org/10.1123/ijspp.2020-0305
  127. Van Thienen, R., Van Proeyen, K., Vanden Eynde, B., Puype, J., Lefere, T., & Hespel, P. (2009). Beta-alanine improves sprint performance in endurance cycling. Med Sci Sports Exerc, 41(4), 898-903. https://doi.org/10.1249/MSS.0b013e31818db708
  128. Vandebuerie, F., Vanden Eynde, B., Vandenberghe, K., & Hespel, P. (1998). Effect of creatine loading on endurance capacity and sprint power in cyclists. Int J Sports Med, 19(7), 490-495. https://doi.org/10.1055/s-2007-971950
  129. Vandecapelle, B. (2023). FACTCHECK. “Toen hij 17 was, had hij VO₂max van 97”: waanzinnige cijfers doen de ronde over Vingegaard, maar kloppen ze wel? [Internet]. 2023 July 19 [cited 2023 August 2]; Retrieved from: https://www.hln.be/tour-de-france/factcheck-toen-hij-17-was-had-hij-vomax-van-97-waanzinnige-cijfers-doen-de-ronde-over-vingegaard-maar-kloppen-ze-wel~a340e8a6/.
  130. Vaughters, J. (2019). One-Way Ticket: Nine Lives on Two Wheels. Quercus Editions Ltd.
  131. Vikmoen, O., Ellefsen, S., Trøen, Ø., Hollan, I., Hanestadhaugen, M., Raastad, T., & Rønnestad, B. (2016). Strength training improves cycling performance, fractional utilization of VO2max and cycling economy in female cyclists. Scand J Med Sci Sports, 26(4), 384-396. https://doi.org/10.1111/sms.12468
  132. Voet, W. (2002). Breaking the Chain: Drugs and Cycling: The True Story. Random House.
  133. Wang, G., Durussel, J., Shurlock, J., Mooses, M., Fuku, N., Bruinvels, G., Pedlar, C., Burden, R., Murray, A., Yee, B., Keenan, A., McClure, J. D., Sottas, P.-E., & Pitsiladis, Y. P. (2017). Validation of whole-blood transcriptome signature during microdose recombinant human erythropoietin (rHuEpo) administration. BMC Genomics, 18(8), 817. https://doi.org/10.1186/s12864-017-4191-7
  134. Whittle, J. (2009). Bad Blood: The Secret Life of the Tour de France. Yellow Jersey Press.
  135. Williams, C. J., Williams, M. G., Eynon, N., Ashton, K. J., Little, J. P., Wisloff, U., & Coombes, J. S. (2017). Genes to predict VO2max trainability: a systematic review. BMC Genomics, 18(Suppl 8), 831. https://doi.org/10.1186/s12864-017-4192-6
  136. Witts, J. (2022, 1 August 2022). Rouleur Retrieved 10 January 2023 from https://www.rouleur.cc/blogs/rouleur-performance/recover-like-a-grand-tour-rider
  137. Witts, J. (2022, 1 September 2022). Behind the scenes of Dan Bigham’s Hour Record: Part one Rouleur. Retrieved 17 January 2023 from https://www.rouleur.cc/blogs/the-rouleur-journal/behind-the-scenes-of-dan-bighams-hour-record-part-one
  138. Zenovich, M. (2020). Lance Part 1 ESPN.
  139. Øvretveit, K. (2023). Metabolic and moral effects of exogenous ketones. Norwegian journal of nutrition, 21(2), 33-36. https://doi.org/10.18261/ntfe.21.2.6
  140. Øvretveit, K., & Tøien, T. (2018). Maximal Strength Training Improves Strength Performance in Grapplers. J Strength Cond Res, 32(12), 3326-3332. https://doi.org/10.1519/jsc.0000000000002863
  141. Aagaard, P., Andersen, J. L., Bennekou, M., Larsson, B., Olesen, J. L., Crameri, R., Magnusson, S. P., & Kjær, M. (2011). Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scandinavian Journal of Medicine & Science in Sports, 21(6), e298-e307. https://doi.org/10.1111/j.1600-0838.2010.01283.x
2024-02-22T11:24:51-06:00February 23rd, 2024|Research, Sport Education, Sport Training, Sports Coaching, Sports Health & Fitness, Sports Medicine, Sports Nutrition|Comments Off on Can there be two speeds in a clean peloton? Performance strategies in modern road cycling
Go to Top