Effective use of Imagery Assisted Virtual Reality in Pitch Recognition and Sport Imagery Ability Development

Authors: Lindsay Ross-Stewart1, Landon Braun2, & Victoria Hardcastle3

1Department of Applied Health, Southern Illinois University Edwardsville
2College of Health Professions and Sciences, University of Wisconsin Milwaukee
3Department of Intercollegiate Athletics, Savannah State University

Corresponding Author:
Dr. Lindsay Ross-Stewart
Campus Box 1126
Southern Illinois University Edwardsville
Edwardsville, IL, 62026
lrossst@siue.edu
(618) 650-2410

Lindsay Ross-Stewart, PhD is an Associate Professor in the Department of Applied Health at Southern Illinois University Edwardsville. Dr. Ross-Stewart is a CMPC® and a Canadian Sport Psychology Association Mental Performance Consultant (MPC).

Landon Braun, M.S., is a Doctoral Student at the University of Wisconsin-Milwaukee in the College of Health Professions & Sciences. At UWM Landon works as a Teaching Assistant in the School of Rehabilitation Sciences & Technology where he teaches courses related sport and performance psychology to both undergraduate and graduate students.

Victoria Hardcastle, M.S., is an Assistant Softball Coach at Savannah State University.

Effective use of Imagery Assisted Virtual Reality in Pitch Recognition and Sport Imagery Ability Development

ABSTRACT

Abstract: Imagery can be described as experience that mimics real world experiences through the combination of using different sensory modalities in the absence of actual perceptions (43). One uses visual, auditory, kinesthetic (touch), smell, and taste to create a picture simulating real world environments and scenarios. Imagery can be used to enhance various aspects of performance by mentally preparing someone for an upcoming competition or helping an athlete focus specifically on a task (19). Virtual reality, understood in this study as a first-person filmed, computer presented, immersive simulation of a real environment (32), has become increasingly more utilized in sport performance settings (7, 37, 44). Combing these two elements, the purpose of this study was to investigate an applied Imagery Assisted Virtual Reality (IAVR) intervention on imagery ability and pitch recognition in a sample of eleven National Collegiate Athletic Association (NCAA) Division One softball players at a Midwestern University. This study’s results indicated a significant increase in global imagery ability as well as in four of the five functions of imagery (CS, CG, MG-A, MG-A) and in pitch type recognition. Practically, the results from this study suggest that the IAVR intervention can create an impactful experience to assist athletes in improving their performance and psychological skills.

Keywords: Psychological Skills, Pitching Ability, Softball, Virtual Reality, Collegiate Sport

Virtual reality technology has become an increasingly common tool used in sport (e.g., 3 – 4, 7, 14, 17, 24, 26; 28, 31, 37, 44) with application in areas such as injury rehabilitation (31), and performance enhancement (2, 27, Wood et al., 2020). In fact, virtual reality has been labeled the next step forward for athletic training (47) and has been the subject of several states of the field (e.g., 7, 26).


Virtual reality was originally defined as a computer-generated, artificial, or simulated environment created by technological software (38). Within sport, it has been defined as instances when individuals are engaged in a sport that is represented in a computer-simulated environment which aims to induce a sense of being mentally or physically present and enables interactivity with the environment (28). One important aspect that virtual reality training is lacking is a focus on how virtual reality can assist in increasing an athlete’s psychological skill development (32). While virtual reality can impressively replicate environments and simulate real-world reactions; it still lacks the ability to capture an emotional response to the environment (32). As we know that how one feels and their perceptions of the sporting environment are necessary for performance, past research has shown this to be a challenge in traditional VR interventions (11) Research on the incorporation of imagery into a virtual reality training program has shown it to be a promising way to gain the advantages of VR and to overcome this potential challenge (32, 33; 34).


In the context of sport, White and Hardy (45) defined mental imagery as: an experience that mimics real experience. We can be aware of “seeing” an image, feeling movements as an image, or experiencing an image of smell, tastes, or sounds without actually experiencing the real thing (23). One approach to the application of imagery in sport is the revised applied model of imagery, which states that athletes may use it to achieve different outcomes (10). To achieve desired outcomes, imagery type, what athlete’s images and imagery function, the why or the purpose of an athlete’s image should be considered (29). Imagery type is split into two categories, cognitive and motivational, with each operating at specific and general levels (43). Cognitive refers to performance enhancement while motivational focuses on confidence enhancement (5). Imagery types and functions have been defined as: Cognitive specific (CS) helps an athlete to work on skill learning, development, and execution. Cognitive general (CG) affords the athlete the ability to image different strategies and routines. Motivational specific (MS) imagery focuses on enhancing motivation through goal setting and goal achievement. Motivational general arousal (MGA) imagery focuses on somatic and emotional experiences such as regulating stress and arousal. Motivational general mastery (MGM) imagery concentrates on coping, gaining, and maintaining self-confidence, and staying focused (10, 18) identify. Athletes might use each of the imagery types alone or in combination with one another, depending on the meaning an athlete applies to the image (29). For example, an athlete can use cognitive specific imagery (CS type) to image themselves executing a skill successfully (CS function), but this image may also increase their confidence, which would be for the function type MG-M (10).


Focusing on the way in which Imagery and Virtual Reality could be used together, Ross-Stewart and colleagues developed Imagery Assisted Virtual Reality (IAVR), a training protocol that involves an immersive virtual reality experience for users in which kinesthetic awareness is incorporated with users being able to see a first-person simulated scenario coupled with an individualized imagery script aimed at enhancing psychological skills and performance (32). IAVR entailed a first-person filmed batting environment from an on-deck position all the way up to batting and taking swings. This video was then followed by a blank screen with an individualized guided imagery script tailored to each individual player that was either audio recorded in the video itself or written down. In their initial study they found that participants who completed an IAVR intervention increased their skills imagery (CS), goal imagery (MS) and mastery imagery (MG-M) as measured by the Sport Imagery Ability Questionnaire (SIAQ; 43). Furthermore, results suggested an increase in overall imagery use, positive self-talk and automaticity in both practice and competition through the length of the study. Additionally, negative thinking during competition decreased, as measured by the Test of Performance Strategies (TOPS; 39). The finding that imagery and virtual reality used together can impact psychological constructs was supported by Frank et al (2022) who found self-efficacy to increase in a physical activity task using imagery and virtual reality. Furthering the support for IAVR, a recent study on the impact of VR on imagery ability and emotional affect found that VR can “induce emotional arousal and affect the mental imagery skills and positive affect of athletes” (46).


Baseball hall of famer Ted Williams referred to batting as “the hardest thing to do in sports” (35). If a softball pitcher throws a 60-mph fastball, it will reach Homeplate in .45 seconds. However, if she throws a changeup at 50 mph, it will reach Homeplate in .55 seconds. Batters have a brief window of opportunity in which they must recognize the pitch and decide to swing or not swing (20). Pitch recognition is the batter’s ability to recognize which way the seams on the ball are spinning/rotating and the trajectory of the ball (20). These two components can be categorized by pitch type (fastball, change-up, drop ball, rise ball) and prediction of eventual location of the pitch (strike, ball, inside, outside) (13). Being able to recognize pitches is an essential aspect of batting. However, there exists little agreement on what the skill of pitch recognition consists of and how to improve it (13).
Each pitch is comprised of different combinations of velocity, rotation, and trajectory cues. Outside of rotation and trajectory cues, there are other sources of information a batter might be receiving information from without being aware of it. These cues include knowledge of the pitcher, game situation, and batter’s count (20). A batter’s ability to recognize which pitch is being thrown will allow them to conduct their swing accordingly and increase performance. This recognition will allow a batter to make more solid hits and recognize the difference between a ball and strike. This recognition will also allow them to either look for pitches they want to hit or draw more walks. Therefore, pitch recognition is a pivotal skill for softball players to obtain if they want to achieve top performance.


The use of VR has been shown to be an effective tool for the increase of strike zone and pitch recognition (16). Virtual reality training has also been shown to lead to a greater sensitivity to visual information provided by the ball trajectory, seam rotation, and improved ability to use monocular cues to determine whether a pitch would cross the plate in the strike zone or not (16). Furthermore, Ranganathan and Carlton (30) found that VR was effective when baseball players had visual information of an entire pitch in their VR environment and ball trajectory yielded a higher prediction accuracy.


Based on both past research in VR and IAVR, merging imagery and virtual reality may enhance the psychological skill and strategy development of athletes more than if they are used alone. Taken with recent suggestions for more research on the effectiveness of VR on both skill acquisition and psychological change in sport (e.g., 7 17, 26, 28 31, 41), specifically, Cotterill’s assertion that “there is also a need for more applied case studies that outline the procedures adopted and reflect on the outcomes obtained using VR in sport psychology–relevant ways”(7, p.22). The purpose of this paper is to highlight an applied Imagery Assisted Virtual Reality intervention that was used with a National Collegiate Athletic Association (NCAA) Division I softball team. Specifically, hitters were given the opportunity to participate in an intervention that designed individualized imagery assisted virtual reality video for them and then they were assessed to see how it impacted their imagery ability, and pitch recognition. Based on past research, it was hypothesized that both global imagery ability and pitch recognition would increase from baseline to post intervention. Furthermore, based on past research on IAVR (32) it was hypothesized that CS, CG, and MG-M imagery would significantly increase from baseline to post intervention. No hypothesis was made related to MS and MG-A imagery due to lack of past research, at the time of data collection, supporting the use of this imagery increasing using IAVR.

Materials and Methods

Methods

Participants
Participants were 11 NCAA Division One female softball players at a Midwestern University. Of the 11 participants five were right-handed batters and six were left-handed batters. Their ages ranged from 18-24 years old.


Measures
Sport Imagery Ability Questionnaire (43; SIAQ): The SIAQ was designed to measure an athlete’s ability to image different content (i.e., strategies, skills, feelings, and goals) and the frequency that an athlete images. The questionnaire has 15 questions rated from 1 (very hard to image) to 7 (very easy to image). The questions are divided into five different subscales; skill imagery ability (e.g., defining a specific skill), strategy imagery ability (e.g., making/executing strategies), goal imagery ability (e.g., winning the game), affect imagery ability (e.g., positive emotions connected with the sport), and mastery imagery ability (e.g., positive outlook when things are not going well). An overall sport imagery ability score and all subscales were calculated separately. To score each of the five subscales, questions for the subscale were summed and divided by the number of questions for each source. The SIAQ has been found to have good validity and reliability (43)


Pitch recognition test: A Pitch Recognition test was designed for this study to assess a participant’s ability to recognize a pitch type (fastball. change-up, etc.) and pitch location (strike/ball). Participants viewed twelve pitches via GoPro film from a pitcher. The film the participants viewed was from the same film they viewed in their IAVR. There were five seconds between each pitch allowing for the participants to circle both the pitch type and pitch location of the previously viewed pitch. The pitch recognition test had twelve different pitches for the baseline testing and the post intervention testing. The number of pitches they correctly identified for both type and location divided by twelve was their total pitch recognition scores. Both pitch type and pitch location were scored as subscale.

Procedure
Institution IRB was obtained. Players were recruited from an NCAA (National Collegiate Athletic Association) Division I softball team. Eleven players signed up to participate in the intervention. Participants who gave consent were assigned a time to film their first-person VR film. Filming was done both on the players’ field and in their indoor hitting facility to make sure it properly mimicked where they were currently practicing. During filming, participants wore dual mounted GoPro headsets on top of their batting helmets to gain first person filming perspectives. Participants were instructed to go through their whole routine starting with preparation for the on-deck circle by stepping into the batter’s box. Filming was also done to gain a third person perspective using a dual mounted GoPro headset strapped to a tripod and placed in the batter’s box. For this film day, three pitchers from the same team, who volunteered to help with the study were filmed pitching from the mound (one left-handed, two right-handed). All three of the pitchers threw their pitches (fastball, change-up, rise ball, etc.) for both right-handed batter and left-handed batter viewpoints. Ninety-six pitches were filmed to allow for a variety of options for the pitching videos.
After the filming was complete the research team used Shotcut to edit the film into two pitch recognition videos, and an individualized VR video for each participant. Videos of the pitches were made to assess pitch recognition at baseline and time 2. To make these videos, the third-person video was edited by clipping each pitcher’s pitch into its own. This allowed the researchers to integrate all three pitchers’ pitches into a specific order. Researchers then went through and selected twelve pitches out of the right-handed batter’s film and a separate twelve out of the left-handed batter’s film. These clips were arranged to simulate two full at bats, with a five second black screen between each pitch. This method was replicated to make the pitch recognition video that would be used for the post test.


To make the IAVR videos, first-person perspective film was edited to start when participants start their pre-at bat routine. The clip ended when the batter received a pitch from the pitcher while they were in the batter’s box. In these videos pitch clips were aligned to simulate a real world at bat, including timing between bats. To develop the guided imagery scripts that would be recorded as audio into the Virtual Reality videos, participants individually met with the research team to discuss their experiences at bat. The imagery scripts were written according to the guidelines suggested by (42) making sure to incorporate both stimulus and response propositions (8, 22) to the imagery scripts. The imagery scripts were broken down and recorded into two audio files. The first recording consisted of each participant’s rituals and routines starting when they are “in the hole” all the way to being in the batter’s box. This included getting equipment on (batting gloves, elbow guard, etc.), walking to the on-deck circle, on deck circle rituals, walking to the batter’s box, and pre at bat rituals. Some participants opted to have their walk-up song playing in the background during their imagery script when walking from the on-deck circle to the batter’s box.


The second recording started when each participant was in the batter’s box. Depending on how the participant wanted their imagery script written, they might receive a ball or strike first. Then, hitting to a designated spot of their choosing. Participants then had a choice of running through first, running to second, or sliding into second. The scenarios and cues they picked up from the first base coach were all individualized to each participant. These individual imagery scripts were turned into audio files and then embedded into the participants corresponding virtual reality film to make the Imagery Assisted Virtual Reality interventions for each participant. The IAVR was set up as the following: imagery script of preparation for an at bat, 3rd person pitch film, first person film from the dugout to the batter’s box, and then imagery script of hitting the ball and making it to a base safe.
Before being given their IAVR film, participants watched the baseline pitch recognition video and marked the pitch type and location of each video. Each player was provided with a pair of virtual reality goggles and a locked cell phone loaded with their individualized video. Instructions were also provided to participants on how to download the videos onto their personal phone if they preferred to have it on their own phone. Participants were instructed to watch their IAVR video at least once a day using virtual reality goggles. Participants were also informed that if they requested any changes to their IAVR (i.e., imagery speed, tone, pitch order) the research team would make the changes at any time during the intervention.
After participants had the IAVR video for six weeks they completed a post intervention pitch recognition test where they watched the second pitching video that had been made and once again recorded what type and location, they believed they saw for each pitch. They also completed the SIAQ at this time.


Results
Review of the data indicated that two participants had missed one question each. The means for each question were used as a replacement so the participants data could still be used in the analysis, as deemed appropriate in inferential statistics (21). Next descriptive statistics for baseline and post intervention were calculated for each of the five imagery ability subscales and global imagery ability score, as well as total pitch recognition, pitch type and pitch location. Paired samples t-tests were run to assess mean changes from baseline to post intervention for all imagery ability subscales and total imagery score as well as for the three pitch assessments. As the data were expected to increase from baseline to post intervention across all variables a one tailed test was employed with an alpha level of 0.05. Cohens d were calculated for all pairs with 0.21 – 0.59 considered a small effect .60 – .79 a medium effect and 0.80 to 100 a large effect (6).


Imagery
Participants’ global imagery ability was higher at post-testing (m = 5.69, sd = 0.79) as opposed to baseline (m = 5.02, sd = 0.69), which was found to be a statistically significant difference, t(10) = -2.70, p = .01, d = 0.91). Skill imagery ability change from baseline to post intervention was also significant (t(10) = -2.51, p = 0.02, d = 0.73), indicating that the participants increased their skill imagery ability from baseline (m = 4.79, sd = 1.12) to post intervention (m = 5.63, sd = 1.20). Strategy imagery ability was found to have a statistically significant change (t(10) = -2.05, p = .03, d = 0.63). Means indicated an increase from 4.73 (sd =0.94) at baseline to 5.30 (sd =0.88) at post intervention. The affect imagery ability increase was statistically significant (t(10) = -2.07 p = 0.03, d = 0.81). Means indicated a change from 5.55 (sd = 0.83) at baseline to 6.22 at post intervention (sd = 0.79). Mastery imagery ability from baseline (m = 4.88, sd = 0.86) to post test (m = 5.60, sd = 0.79) was also statistically significant (t(10) = -2.05, p = 0.02, d = 0.88). Goal imagery did not have a statistically significant change from baseline (m = 5.15, sd = 1.02) to post intervention (m = 5.70, sd = 1.03, (p = 0.07, d = 0.53).


Pitch Statistics
Pitch type recognition was found to be statistically significant from baseline (m = 6.60, sd = 3.13) to post intervention (m = 9.10, sd = 2.08), t(10) = -2.28, p = .04) with a large effect size (d = 0.94). Pitch location recognition and total pitch recognition both increased, however neither were statistically significant changes (p >0.05). Percentage change was also recorded for pitch type as that is the common way to assess these statistics in applied softball scenarios. See Table 1 for full statistics for Pitch.

Table 1. Average Number and percentage of pitches accurately identified at baseline and Post Intervention

# Correct Baseline# Correct  Post Intervention# Correct Pitch Type Baseline# Correct Pitch Type Post Intervention# Correct Pitch Location Baseline# Correct Pitch Location Post Intervention
#%#%#%#%#%#%
4.134.175.949.176.6559.175.83758.337.260

Discussion
This study investigated the effect of an applied Imagery Assisted Virtual Reality intervention on NCAA Division I softball players’ imagery ability and pitch recognition. This study hypothesized an increase in global imagery ability, pitch recognition as well as increases in skill (CS), strategy (CG), and Confidence (MG-M) imagery. Overall, the hypotheses were supported by the findings of this study.


This study’s results indicated a significant increase in the participants’ global imagery ability with this change indicating a large effect size. Furthermore, of the five imagery subscales all showed increases from baseline to post intervention, with Skill, Strategy, Mastery and Affect imagery ability increasing from baseline to post intervention. The increase in global imagery ability and subscale increases equates to the athlete’s ability to image being easier in real sport situations (49). This is of applied significance as this increase in global imagery could assist athletes in mental preparation before engaging in sport specific performance endeavors. It is also of importance as we have few studies demonstrating how to increase imagery ability even though we know the ability to image is important for athletes who want to use imagery to increase their sport performance. As imagery has been shown over and over again to increase sport performance (e.g., 9), knowing how to increase imagery ability is an important step in pursuit of maximizing the benefits of this psychological strategy.
This study demonstrates how virtual reality can assist a person’s imagery ability when showing real world video in correlation to their imagery script. We can postulate that global imagery ability increased in part due to the IAVR increasing the functional equivalency of the intervention (32). These results align with research on functional equivalence (22 and the PETTLEP model of imagery which states that all senses need to be engaged to be fully immersed in an imagery script (e.g., 1, 19; 36, 40).


The results indicated significant increases in confidence (MG-M) and affect (MG-A) imagery ability which equates to an athlete’s ability to image and be in control and cope during difficult sporting situations, and image positive content withing their sport (43). It may be that these motivational imagery subscales had a significant increase due to cue words (e.g., calm, focus, confidently) that were inserted into each participants imagery script to stimulate an emotional response. These cue words, chosen by each participant, were combined with repeated phrases such as “take a deep breath,” “feel yourself,” and “you are confident” were also used to stimulate an emotional response from participants. Some participants also opted to have their walk-up song play during their imagery assisted virtual reality. This auditory connection between virtual reality film and real-world stimulus may have allowed participants to emotionally connect to the IAVR and use it to regulate arousal. It should be noted that although it was not hypothesized that affect imagery (MG-A) would increase due to lack of research at the time of study, this finding is supported by recent research that has come out since data was collected for this study (46). The increase in MG-A imagery ability indicates that athletes experienced some type of realistic emotion within the imagery experience. This finding coincides with previous research (25, 27) that posits increases in affect imagery within virtual reality films may be attributed to social presence within these virtual reality films. Lee and colleagues (25) believed that responses to social presence within virtual environments may be due to the players’ expectations of interactions during an actual game. Within this study, social presence was maintained throughout virtual reality film by incorporating the presence of teammates in the videos. Finally, there were significant increases in skill (CS), and strategy (CG) imagery ability, which supported the hypothesis and is in line with past research (32). This makes sense as the IAVR gave the players extra opportunities to see themselves engaging in the skill of hitting and through imagery incorporated their individual strategies for how they were going to hit the ball.


Pitch Statistics
The hypothesis that pitch recognition would increase was partially supported. Pitch type recognition was found to be significantly increased from pre to post intervention. However, although pitch location recognition and total pitch recognition both increased, neither change was statistically significant. Percentage change was also recorded for pitch type as that is the common way to assess these statistics in applied softball scenarios and gave real world application information when it came to pitch recognition change. Of particular importance in this study was the finding that pitch type recognition increased by over 20% (from recognizing 6.6/12 – 9.1/12) from baseline to post intervention. Although not statistically significant the change in total pitch recognition increased by two pitches (4.1/12 to 5.9/12, 15%) which in an applied setting is a noteworthy performance increase. As the IAVR in this study was not filmed with 360-degree cameras it may be that this affected the batter’s sense of where the pitch was over the base, leading to a lack of pitch location increase. However, the IAVR focus on first person perspective of the pitch coming at them just as it would in a real game essentially gave them more reps “reading” the pitch where they did not have to think about anything else (what they were going to do), which may be part of why their pitch type recognition increased. These findings are important for those within the softball world as we know that recognizing a pitch can predict accuracy of an at bat (e.g., 30, 16). Although it is noted that pitch recognition is an essential aspect to batting, there is little agreement on how to improve it (13). This study’s results demonstrate the effectiveness of IAVR on increasing pitch type recognition and could therefore be a low-cost tool used by teams to increase the skill of pitch recognition, and therefore batting percentages.


While this study is an important addition to the new area of Imagery Assisted Virtual Reality, there are limitations to consider. The first limitation of this study was the sample size. Although the small sample size is acknowledged as a limitation it should be noted that even with this small sample size, the effect sizes in this study were medium to high indicating that with a larger sample these findings may be even more pronounced. As this was an applied study using players who were in season, it was considered unethical to make some of them a control group. Specifically, having some players given an advantage over others, an advantage that is not shown to disappear over time, would be unfair to those in the control group, impacting both individual athletes and the team as a whole. Therefore, not having a control group, although a deliberate decision, does lead to the lack of knowledge as to whether another unexpected variable may have impacted these results.


As IAVR is a new strategy for increasing imagery ability and sport performance, there are several areas future researchers should consider. Current research on IAVR has focused on the effect of IAVR on imagery ability it may be useful to focus on imagery use (facilitative and debilitative) as the ability to image is of importance only in that it effects imagery use effectiveness (12). Therefore, future research should focus specifically on the effect of IAVR on amount of deliberate imagery use both during and after they complete the IAVR protocol. To that point, future applied research on IAVR would benefit from tracking season performance post intervention, or by athletes who use IAVR throughout a season. Additionally, the impact of IAVR on pitch recognition during in game would be a worthy pursuit. At this time, we do not know what the optimal length of an IAVR protocol would be for athlete imagery, psychological skill, or athletic performance. All these areas are ripe for future research to investigate.


Conclusion
Overall, the results of this study further support the value of an Imagery Assisted Virtual Reality protocol being used in sport. Specifically, this study showed that IAVR can increase performance statistics (pitch recognition) and imagery ability.


Applications in Sport
These findings have practical significance as they lend support for IAVR to be used by softball players to further both their in-game skills and psychological skills development. Furthermore, these findings add to the existing literature that indicates IAVR may be a cost effective and impactful tool for athletes in various sports.

References

  1. Anuar, N., Cumming, J., & Williams, S. E. (2015). Effects of applying the PETTLEP model on vividness and ease of imaging movement. Journal of Applied Sport Psychology, 28(2), 185-198. doi:10.1080/10413200.2015.1099122
  2. Bedir, D., & Erhan, S. E. (2021). The effect of virtual reality technology on the imagery skills and performance of target-based sports athletes. Frontiers in Psychology, 11, 2073. doi.org/10.3389/fpsyg.2020.02073
  3. Bideau, B., Multon, F., Kulpa, R., Fradet, L., Arnaldi, B. & Delamarche, P. (2004). Using virtual reality to analyze links between handball thrower kinematics and goalkeeper’s reactions. Neuroscience Letters, 372(1-2), pp.119-122. https://doi.org/10.1016/j.neulet.2004.09.023
  4. Bird, J. M. (2020). The use of virtual reality head-mounted displays within applied sport psychology. Journal of Sport Psychology in Action, 11(2), 115-128. https://doi.org/10.1080/21520704.2018.1563573
  5. Callow, N., & Hardy, L. (2001). Types of imagery associated with sport confidence in netball players of varying skill levels. Journal of Applied Sport Psychology, 13(1), 1-17. doi:10.1080/104132001753155921
  6. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:
  7. Cotterill, S. (2018). Virtual reality and sport performance: Implications for applied practice. Case Studies in Sport and Exercise Psychology, 2, 21-22. doi:10.1123/cssep.2018-0002
  8. Cumming, J., Cooley, S. J., Anuar, N., Kosteli, M.-C., Quinton, M. L., Weibull, F., & Williams, S. E. (2016). Developing imagery ability effectively: A guide to layered stimulus response training. Journal of Sport Psychology in Action, 8(1), 23–33. doi: 10.1080/21520704.2016.1205698
  9. Cumming, J., & Ramsey, R. (2008). Imagery interventions in sport. In Advances in applied sport psychology (pp. 15-46). Routledge. doi: 10.13140/2.1.2619.2322.
  10. Cumming, J., & Williams, S. E. (2013). Introducing the revised applied model of deliberate imagery use for sport, dance, exercise, and rehabilitation. Movement & Sport Sciences-Science & Motricité, (82), 69-81. https://doi.org/10.1051/sm/2013098
  11. Cuperus, A. & Van der Ham, I. (2016). Virtual reality replays of sports performance: Effects on memory, feeling of competence, and performance. Learning and Motivation, 56, pp.48-52. https://doi.org/10.1016/j.lmot.2016.09.005
  12. Di Corrado, D., Guarnera, M., Vitali, F., Quartiroli, A., & Coco, M. (2019). Imagery ability of elite level athletes from individual vs. team and contact vs. no-contact sports. Brain, Cognition, and Mental Health, 7, e6940. doi: https://doi.org/10.7717/peerj.6940
  13. Fadde, P. J. (2006). Interactive video training of perceptual decision-making in the sport of baseball. Retrieved from http://peterfadde.com/Research/Baseball.pdf
  14. Fink, P., Foo, P., & Warren, W. (2009). Catching fly balls in virtual reality: A critical test of the outfielder problem. Journal of Vision, 9(13), pp.14-14. doi: https://doi.org/10.1167/9.13.14
  15. Frank, C., Hülsmann, F., Waltemate, T., Wright, D. J., Eaves, D. L., Bruton, A., Botsch, M., & Schack, T. (2022). Motor imagery during action observation in virtual reality: the impact of watching myself performing at a level I have not yet achieved. International Journal of Sport and Exercise Psychology, 1-27. https://doi.org/10.1080/1612197x.2022.2057570
  16. Gray, R. (2017). Transfer of training from virtual to real baseball batting. Frontiers in Psychology, 2183. https://doi.org/10.3389/fpsyg.2017.02183
  17. Harrison, K., Potts, E., King, A. C., & Braun-Trocchio, R. (2021). The effectiveness of virtual reality on anxiety and performance in female soccer players. Sports, 9(12), 167. https://doi.org/10.3390/sports9120167
  18. Hall, C. R., Mack, D. E., Paivio, A., & Hausenblas, H. A. (1998). Imagery use by athletes: Development of the Sport Imagery Questionnaire. International Journal of Sport Psychology, 29(1), 73–89.
  19. Holmes, P. S. & Collins, D. J. (2001). The PETTLEP approach to motor imagery: A functional equivalence model for sport psychologists. Journal of Applied Sport Psychology, 13(1), 60-83. doi:10.1080/104132001753155958
  20. Hyllegard, R. (1991). The role of the baseball seam pattern in pitch recognition. Journal of Sport and Exercise Psychology, 13(1), pp.80-84. https://doi.org/10.1123/jsep.13.1.80
  21. Huck, S. W. (2014). Reading statistics and research (7th ed.). Pearson Education Limited.
  22. Lawrence Erlbaum Associates. https://doi.org/10.2307/2290095
  23. Jeannerod, M. (1981) Intersegmental coordination during reaching at natural visual objects. Attention and performance IX, ed. Long, J. & Baddeley, A., & Erlbaum.
  24. Jones, L., & Stuth, G. (1997). The uses of mental imagery in athletics: An overview. Applied and Preventive Psychology, 6(2), 101–115. doi: 10.1016/s0962-1849(05)80016-2
  25. Kehoe, R. & Rice, M. (2016). Reality, virtual reality, and imagery: Quality of movement in novice dart players. British Journal of Occupational Therapy, 79(4), pp.244-251. https://doi.org/10.1177/0308022615616820
  26. Lee, H., Chung, S., & Lee, W. (2012). Presence in virtual golf simulators: The effects of presence on perceived enjoyment, perceived value, and behavioral intention. New Media & Society, 15(6), pp.930-946. https://doi.org/10.1177/1461444812464033
  27. Malachi, E.G., Tunggara, R., Cahyadi, Y., Meiliana, Fajar. M. (2023). A systematic literature review of virtual reality implementation in sports. International Conference on Artificial Intelligence in Information and Communication (ICAIIC) Conference Program. doi 10.1109/ICAIIC57133.2023.10067095
  28. Murray, E., Neumann, D., Moffitt, R. and Thomas, P. (2016). The effects of the presence of others during a rowing exercise in a virtual reality environment. Psychology of Sport and Exercise, 22, pp.328-336.
  29. Neumann, D. L., Moffitt, R. L., Thomas, P. R., Loveday, K., Watling, D. P., Lombard, C. L., Antonova, S., & Tremeer, M. A. (2018). A systematic review of the application of interactive virtual reality to sport. Virtual Reality, 22(3), 183-198.
  30. Nordin, S. M., & Cumming, J. (2008). Types and functions of athletes’ imagery: Testing predictions from the applied model of imagery use by examining effectiveness. International Journal of Sport and Exercise Psychology, 6(2), 189-206. doi:10.1080/1612197x.2008.9671861
  31. Ranganathan, R. & Carlton, L. (2007). Perception-action coupling and anticipatory performance in baseball batting. Journal of Motor Behavior, 39(5), pp.369-380.doi: 10.3200/JMBR.39.5.369-380.
  32. Richlan, F., M Weiß, M., Kastner, P., & Braid, J. (2022). Virtual training, real effects: A systematic literature review on sports performance enhancement through interventions in virtual reality. PsyArXiv. psyarxiv.com. doi.org/10.31234/osf.io/ckgm2
  33. Ross-Stewart, L., Price, J., Jackson, D., & Hawkins, C. (2018). A preliminary investigation into the use of an imagery assisted virtual reality intervention in sport. Journal of Sports Science, 6(1).
  34. Ross-Stewart, L & Lee, R. (2023). VR training and imagery training in esports. Journal of Imagery Research in Sport and Physical Activity, 18. doi.org/10.1515/jirspa-2023-0003
  35. Sai Raam, S. V., Santhosh Gopi, S., Santhosh, K., Aravind Subramanian, N., & Babiyon Clement, A. (2022). A preliminary investigation on sports-based VR technology with the influence of psychological skill training. International Journal of Creative Research Thought, 10, 7.
  36. Sherwin, J., Muraskin, J., & Sajda, P. (2012). You can’t think and hit at the same time: Neural correlates of baseball pitch classification. Frontiers in Neuroscience, 6. doi: 10.3389/fins.2012.00177
  37. Smith, D., Wright, C., Allsopp, A., & Westhead, H. (2007). It’s all in the mind: PETTLEP-based imagery and sports performance. Journal of Applied Sport Psychology, 19(1), 80-92. doi:10.1080/10413200600944132
  38. Sohail, Z., Firdos, A., Ikram, S., & Talha, M. (2022). The impact of virtual reality and augmented reality on sport psychology. Revista de Psicología del Deporte (Journal of Sport Psychology), 31(1), 217-226. Retrieved from https://www.rpd-online.com/index.php/rpd/article/view/667
  39. Steuer, J. (1992). Defining virtual reality: Dimensions determining telepresence. Journal of Communication, 42(4), 73-93. doi:10.1111/j.1460-2466.1992.tb00812.x
  40. Thomas, P.R. Murphy, S.M., & Hardy, L. (1999) Test of performance strategies: Development and preliminary validation of a comprehensive measure of athletes’ psychological skills, Journal of Sports Sciences, 17, 697 -711. doi: 10.1080/026404199365560
  41. Wakefield, C., & Smith, D. (2012). Perfecting practice: Applying the PETTLEP model of motor imagery. Journal of Sport Psychology in Action, 3(1), 1-11. doi:10.1080/21520704.2011.639853
  42. Wang, J. (2012). Research on application of virtual reality technology in competitive sports. Procedia Engineering, 29, pp.3659-3662.
  43. Williams, S. E., Cooley, S. J., Newell, E., Weibull, F., & Cumming, J. (2013). Seeing the difference: Developing effective imagery scripts for athletes. Journal of Sport Psychology in Action, 4(2), 109–121. doi: 10.1080/21520704.2013.781560
  44. Williams, S. E., & Cumming, J. (2014). Sport imagery ability questionnaire. ResearchGate. doi:10.13140/RG.2.1.1608.6565
  45. Wood, G., Wright, D. J., Harris, D., Pal, A., Franklin, Z. C., & Vine, S. J. (2021). Testing the construct validity of a soccer-specific virtual reality simulator using novice, academy, and professional soccer players. Virtual Reality, 25(1), 43-51. doi.org/10.1007/s10055-020-00441
  46. White, A. & Hardy, L. (1998). An in-depth analysis of the uses of imagery by high-level slalom canoeists and artistic gymnasts. The Sport Psychologist, 12(4), 387–403. doi.org/10.1123/tsp.12.4.387
  47. Wu Y, Lukosch S, Lukosch H, Lindeman RW, McKee RD, Fukuden S, Ross C and Collins D (2023), Training mental imagery skills of elite athletes in virtual reality. Frontiers in Virtual Reality, 1189717. doi: 10.3389/frvir.2023.1189717
  48. Zorowitz, J. (2018, December 4). It Just Got Real. Retrieved from https://www.nbcsports.com/newsletters
2024-07-18T10:12:55-05:00August 2nd, 2024|Research, Sport Training, Sports Coaching|Comments Off on Effective use of Imagery Assisted Virtual Reality in Pitch Recognition and Sport Imagery Ability Development

Navigating Darkness: College Athlete Suicide, Support Systems, and Shadows of Depression

Authors: Matt Moore, Ph. D, MSW 1, Anne M. W. Kelly, Ph. D 2, Lana Loken, Ed. D. ATC 2, Mastano N. Dzimbiri, MS 1, Payton Bennett, student

Corresponding Author:

Matt Moore, Ph. D, MSW
Chair and Faculty, Family Science and Social Work Department
Miami University
501 E. High Street
Email: moorem28@miamioh.edu

Coaches’ Perspectives of the Influence of Safe Sport-Related Education 

ABSTRACT

Purpose: An increase in mental health concerns and suicide among young adults led to a sharpened research focus on suicide and college athletes. In this study, we investigated the relationship between college athletes’ risk of depression, suicidality, and their support system and whether preventing suicide deaths requires identification of commonly cited risk factors. Methods: Voluntary college athletes aged 18-years-old or older and attending an NAIA member institution participated in the study (n = 361). They completed a web-based instrument that consisted of the following: (1) demographic questionnaire, (2) Patient Health Questionnaire (PHQ-9), (3) Berlin Social Support Scale, and (4) Columbia Suicide Severity Rating Scale. Results: Between 5-18% of college athletes responded affirmatively to one of the questions asking about suicidality. There was a significant moderate negative correlation between the suicide predictor and the PHQ-9 score and significant weak positive correlations between the suicide predictor and perceived emotional support and between the suicide predictor and perceived instrumental support. Conclusion: This study identified findings that might be useful to practitioners and opened new lines for future research. Applications in Sport: College athletic programs and university counseling centers are poised to enhance our understanding of student-athletes’ suicidal distress and how to respond by making use of qualitative research methods. We strongly recommend adopting this strategy to address depression and suicidal ideation.


Keywords: prevention, student-athletes, mental health, risk factors

Introduction
Despite growing openness about mental health struggles, a disparity still exists between physical and mental health (Gorczynski et al., 2023; Moore et al., 2022), fostering stigma and hindering help-seeking behavior (Moore, 2017), particularly among college students (Centers for Disease Control and Prevention [CDC], 2021). While mental health diagnoses in the college student population is a longstanding challenge, the COVID-19 pandemic increased stressors placed on the college student population leading to increased risks (Gupta & Agrawal, 2021; MacDonald & Neville, 2023).


According to the CDC (2021), mental health concerns and suicidal thoughts are increasing for youth and young adults. Forty percent of those surveyed showed signs and symptoms of depression and 20% said they had thoughts of suicide. These trends are similar to studies on college student mental health and suicidality (Barclay et al., 2023; Schmiedehaus et al., 2023). According to the Substance Abuse and Mental Health Services Administration (SAMHSA, 2017) individuals aged 18-25 reported a 3% increase in major depressive episodes from 2015-2017. Additionally,18.9% of individuals 18 and above reported experiencing a mental illness in the past year, with 7.5% reporting a serious mental health illness (SAMHSA, 2017). A second SAMHSA (2021) study found 33.7% of individuals aged 18-25 reported a mental illness and 11.4% reported a serious mental illness.
In addition to concerns about serious mental health illness, SAMHSA (2021) found an increase in rates of suicidal behavior. Specifically, 10.5% reported having serious thoughts of suicide, 3.7% created a suicide plan, and 1.9% attempted suicide. Research by Rosenthal et al. (2023) found higher rates with 13.7% of college students reporting suicide ideation, 7.6% making a suicide plan, and 3.2% reporting at least one suicide attempt. In 2021 suicide became the leading cause of death for those aged 20-24 (CDC, 2023).
One subset of the college student population is college athletes. Recently, discussion of their mental health increased. Researchers attempted to explore the intersectional identity of student athletes and the effect that this role strain may have on mental health (Gorczynski et al., 2023; Moore et al., 2022). Quantifying mental health and suicide risk in this group is challenging, with conflicting results on the link between depression, support systems, and suicide. Many researchers see sport participation as a protective factor for mental health risk due to the social support provided by the team (Hui et al., 2023; Sullivan et al., 2020). But additional pressures like failure to successfully compete or live up to expectations, loss of social structure due to injury or retirement from sport, or time demands of the sport in addition to being a college student can increase the risk (Moore, 2017; Moore et al., 2022). This study builds upon existing research by looking more closely at the relationship between a college athletes’ risk of depression, suicidality, and their support system.


College Athletes and Depression
According to the American Psychological Association (2020), depression is one of the most common mental health disorders in the United States. Depression might include emotional, cognitive, physical, and/or behavioral symptoms and is best understood on a continuum of severity, rather than either present or not present. Findings amongst college athletes demonstrate that depression rates align with rates of the general population of college students (hovering around 25%) (Prinz et al., 2016; Wolanin et al., 2016), and some revealed that athletes have higher rates of depression (over 30%) than the general population (Cox, 2015). While many studies find similar rates between college athletes and their non-athlete peers, others show participation in college athletics can decrease one’s risk for depression (Banu, 2019; Salehioan et al., 2012).
Although some research shows athletic participation may protect against mental illness, there is still reason for concern for college athletes. A current study by the National Collegiate Athletic Association (NCAA, 2022) surveyed almost 10,000 NCAA athletes from all three competitive division levels. Results showed athletes of all competition levels demonstrated elevated levels of mental exhaustion, anxiety, and depression. These levels were nearly two times higher than pre-pandemic levels. The top three factors negatively affecting mental health were academic worries (44%), planning for the future (37%), and financial worries (26%). Only 50% of college athletes believed mental health was a priority for their athletic department, 33% of college athletes did not know where to go to seek mental health services, and as many as 17% of college athletes reported feeling hopeless.


College Athletes and Suicide
Suicide risk in athletes is difficult to determine due to underreporting and misclassification of many sudden deaths. Over the past two decades the NCAA attempted to determine the risk of suicide specific to college athletes. Rao et al. (2015) reported that 7.3% of all athlete deaths were suicides, making suicide the fourth leading cause of death for college athletes. Previously, Miller and Hoffman (2009) found approximately 5% of student-athletes contemplated suicide. Much like research on college athlete depression, some research demonstrates sport protects against suicidality (Maron et al., 2014). This study’s findings highlight the importance of promoting participation in diverse sporting activities among college students given that engaging in such activities safeguards against depression and suicidal ideation by nurturing self-esteem and bolstering social support.


College Athletes and Social Support
The discrepancy in the literature may be accounted for by the supports that are available to college athletes and their willingness to seek such supports (Sullivan et al., 2020). One of the most discussed supports is the team environment. Sullivan et al. (2020) analyzed the effects of social supports on depressive symptoms in college athletes. They found emotional support from teammates, family, and friends was correlated with a decrease in depressive symptoms. Other more formal or instrumental supports that reduced depression included the availability of tutoring and health services, including mental health providers with specialization with athletes.
Social support has not been as extensively studied in the college athlete population. Studies show links between social support and burnout as well as social support and overall wellbeing in college athletes (Defreese & Smith, 2014). Research identified social support as an important component in allowing athletes to balance school and athletics (Carter-Francique, 2015). Many college athletes have strong social support networks naturally, such as relationships with teammates, coaches, medical staff, and other resources provided by the athletic department (Armstrong & Oomen-Early, 2009). They also have supportive relationships, such as family and friends, outside of athletics.
Despite knowledge of these available supports and benefits they offer college athletes, exploring the utilization of built-in athletic supports and personal supports unique to an individual athlete remains understudied. Much of the research tends to oversimplify social support. Due to its dynamic and complex nature, social support among college athletes merits further investigation. Research has not examined the differences in the type of perceived social support in collegiate athletics as it relates to levels of depressive symptoms and suicidality.

Present Study
Overall, the research on mental health issues, including depression and suicide in collegiate athletes is inconclusive. More research is needed to determine what factors put athletes at risk for severe mental health concerns and suicide. The purpose of this study was to investigate whether there is a relationship between levels of depression and suicide risk and levels of social support among National Association of Intercollegiate Athletics (NAIA) college athletes. The NAIA does not have data available on connectedness between depression, social support, and suicide.

Methods

Procedures

Research Design
The current exploratory study utilized a cross-sectional, web-based survey design to gather data from NAIA college athletes. Considering the size of the NAIA student-athlete population, confidence level, confidence intervals, statistical test, and statistical power, the minimum sample for this study was 47 college athletes (Faul et al., 2007). Researchers identified athletic trainers through the NAIA database to establish contact information. Athletic trainers provided survey information to their assigned college athletes. This approach was successful in other NAIA research efforts (Moore & Abbe, 2021).


Sampling
The exploratory study utilized a stratified random sampling procedure to identify college athlete participants. Researchers divided the NAIA college athlete population into subgroups, or strata, based on sports available throughout the NAIA. This included a stratum for each of the 17 sports with separate stratum for each gender that participates in a sport. Next, researchers identified NAIA member institutions that participated in each of the 17 sports. Each institution participating in a sport received a random number. Researchers selected random numbers to identify the member institutions that would participate in the survey from each sport. This approach ensured all member institutions participating in various sports had an equal opportunity for inclusion.


Participants
Voluntary college athletes aged 18-years-old or older and attending an NAIA member institution participated in the study (n = 361). Most participants were 18-21 years old (53.5%, 46.5% indicated being over the age of 21). Survey participants were primarily juniors (30.7%, 23.8% sophomores, 23.1% first years, 22.1% seniors of graduate students). More women completed the survey (59.8%, 40.2% men). Most participants who reported race/ethnicity were White/Caucasian (55.4%, 21.9% Hispanic or Latino, 14.9% Black or African American, 6.6% multiracial, 1.2% from other groups).

Table 1.

NAIA Institutional Demographic Information

University Demographic%
Private20.2%
Public79.8%
Suburban33.3%
Urban33.9%
Rural32.8%
Faith Based62.9%
Non-Faith Based37.1%


Participants recorded which NAIA athletic team they were primarily affiliated with (20.2% baseball, 19.9% soccer, 12.5% track volleyball, 8.0% softball, 6.4% cross country, 6.1% basketball, with all other sports being under 5% each [e.g., football, bowling, cheer, dance, track and field, swimming and diving, golf, tennis, and lacrosse]). Participants were further examined regarding NAIA college/university demographics (See Table 1). Participants also responded to whether or not they receiving mental health training from their college of university before participating in sport. The largest majority (n = 229, 63.7%) indicated they did not receive such training. The other 36.3% (n= 132) indicated they did receive some form of training.
[Insert Table One]

Measures and Instruments

College athletes completed a web-based instrument that consisted of the following: (1) demographic questionnaire (see above demographics), (2) Patient Health Questionnaire (PHQ-9; Kroenke et al., 1999), (3) Berlin Social Support Scale (BSSS; Shulz & Schwarzer, 2003), and (4) the Columbia Suicide Severity Rating Scale (C-SSRS; Posner et al., 2011). 

Patient Health Questionnaire (PHQ-9)
The PHQ-9 is a self-administered version of the PRIME-MD diagnostic instrument for common mental disorders (Kroenke et al., 2001). It is used to make criteria-based diagnoses of depressive and other mental disorders commonly encountered in primary care. This is a 9-item depression module upon which the diagnosis of Diagnostic and Statistical Manual (DSM) depressive disorders is based. Reliability and validity of the tool have indicated it has sound psychometric properties. Internal consistency of the PHQ-9 has been shown to be high (American Psychological Association, 2020). There is precedent for using the PHQ-9 in research with college athletes (DaCosta et al., 2020; LoGalbo et al., 2022).

Berlin Social Support Scale (BSSS)
The researchers measured the degree of emotional and tangible support using the BSSS (Schulz & Schwarzer, 2003). This scale measured perceived emotional and instrumental supports, need for support, and support seeking. There are 17 items on the BSSS that are answered using a five-point Likert scale with endpoints “1 = Strongly Disagree” and “4 = Strongly Agree.” The researchers used a mean score for each of the subscales (perceived emotional support, perceived instrumental support, need for support, and support seeking). The scale has a Cronbach’s alpha of 0.83 for perceived social support, 0.63 for need for support, and 0.83 for support seeking (DiMillo et al., 2017). The scale has a prior history of use within college athletics (Sullivan et al., 2020)


Columbia Suicide Severity Rating Scale (C-SSRS)
The C-SSRS was developed by researchers from Columbia, Pennsylvania, and Pittsburgh Universities to evaluate suicidal ideation and behavior (Posner et al., 2011). The scale provides a brief assessment of severity and intensity of suicidal ideation, suicidal behavior, and lethality (Syndergaard et al., 2023). The screener version used in this study consisted of six “yes” or “no” questions. Based on participant responses to the six questions, participants were considered low, moderate, or high risk. The C-SSRS has excellent internal consistency (α = 0.95). Principal components analysis revealed a two-factor solution, accounting for 65.3% of the variance across items (Madan et al., 2016). There is limited research on the use of the C-SSRS with the athlete population (Costanza et al., 2021).


Data Collection
Researchers contacted the athletic training staff at all sampled NAIA member institutions. Athletic training staff received the list of teams from their institution for inclusion in data collection. Researchers provided athletic training staff detailed instructions for data collection and a copy of the informed consent. Athletic training staff distributed the electronic survey to their college athletes. College athletes were able to opt-out of the survey at any time. The survey took approximately 15-20 minutes to complete. Researchers recorded survey results into a statistical software program (SPSS 28) on a secure, private platform.

Data Analysis
Researchers utilized descriptive statistics to provide details about the sample and overall survey results. Researchers used inferential statistics to infer information from the sample data to the overall NAIA student-athlete population.

To investigate the first research objective, an initial correlation analysis was conducted to examine whether having any safe sport training was related to increases in coaching outcomes. The safe sport training variable was transformed so that coaches who answered “yes” to completing any of the safe sport training courses were coded as 1 and coaches who had answered “no” to completing all the safe sport training courses were coded as 0 (i.e., no SS training=0, any SS training=1). This variable was included in a correlation analysis with all coaching outcomes: knowledge & confidence, safe sport stress, stress over athlete well-being, and efficacy to support others. To investigate the second research objective, four separate linear regression models were constructed with the sum of completed safe sport training courses (range =1-12) as the independent variable, and the following coaching outcomes as respective dependent variables: knowledge & confidence, safe sport stress, stress about athlete well-being, and efficacy to support others. In all four models, the coaching context, whether training was required (0=no, 1=yes), and whether training was free (0=no, 1=yes) were included as covariates. To address the third research objective, ANOVAs were conducted with individual safe sport courses as independent variables, and the following coaching outcomes as dependent variables: knowledge & confidence, efficacy to support others, safe sport stress, stress about athlete well-being and efficacy to support others. All analyses were conducted using IBM SPSS Statistics (Version 28) (20).

Results

Results
Descriptive Statistics
College athletes answered each item from the C-SSRS. Descriptive findings from this scale indicated that 18.3% of participants wished to be dead, 18,3% had non-specific active suicidal thoughts, 13.6% had active suicidal ideation without intent to act, 6.1% had active suicidal ideation with some intent to act, and 5.0% had active suicidal ideation with a specific plan and intent to act. Of the 361 college athlete respondents, 25.8% answers “yes” to at least one of the questions on the scale.

College athletes completed the PHQ-9 as a brief screening tool for potential depressive symptoms. Results of the PHQ-9 and the percent of athletes at risk of depression for each item can be found in Table 2.

Table 2. PHQ-9 Scores for NAIA College Athletes

QuestionMean (SD) (% At Risk)
Little interest or pleasure in doing things?1.81 (0.91) (22.1%)
Feeling down, depressed, or hopeless?1.68 (0.81) (14.1%)
Trouble falling asleep or sleeping too much?2.06 (1.05) (30.2%)
Feeling tired or having little energy?2.17 (0.92) (29.1%)
Poor appetite or overeating?1.81 (0.96) (21.3%)
Feeling bad about yourself?1.75 (0.93) (18.6%)
Trouble concentrating on things?1.69 (0.96) (17.2%)
Moving or speaking so slowly that people could have notice? Or more fidgety and restless than usual?1.34 (0.69) (7.8%)
Thoughts that you would be better off dead?1.21 (0.53) (4.1%)

Evaluation of Assumptions

College athletes also completed the BSSS. Results of the BSSS and the percent of athletes at risk of limited social support in various areas can be found in Table 3. These are only the scale items where there were significant concerns about perceived emotional support, perceived instrumental support, need for support, and support seeking.

BSSS Scores for NAIA College Athletes

QuestionMean (SD) (% At Risk)
Whenever I am not feeling well, other people show me that they are fond of me? 3.14 (0.82) (17.2%)
When everything becomes too much for me to handle, others are there to help me?3.21 (0.83) (18.3%)
I get along best without any outside help?2.48 (0.81) (48.7%)
In critical situations, I prefer to ask others for their advice?3.00 (0.79) (23.0%)
Whenever I am down, I look for someone to cheer me up again?2.51 (0.89) (49.6%)
When I am worried, I reach out to someone to talk to?2.69 (0.93) (38.2%)
Whenever I need help, I ask for it.2.70 (0.96) (39%)


Researchers used correlation analysis to assess the relationship between a college student-athletes predictor of suicide with their score on the PHQ-9, perceived emotional support, perceived instrumental support, level of needed support, level of support sought, and mental health training.

Prior to conducting the analysis, researchers generated several statistics and graphs to examine the tests of assumption, including level of measurement, related pairs, absence of outliers, and linearity.


Results of the Correlational Analysis
Researchers computed a Pearson product-moment correlation coefficient to assess the relationship between a college student-athletes suicide predictor and their PHQ-9 score, perceived emotional support, perceived instrumental support, level of needed support, and level of support sought. There was a significant (p < 0.001) moderate negative correlation, r = -.462, N = 361 between the suicide predictor and score on the PHQ-9. There was a significant (p < 0.001) weak positive correlation, r = .236, N = 361 between the suicide predictor and perceived emotional support. A similar significant (p < 0.001) weak positive correlation, r = .255, N = 361 between suicide predictor and perceived instrumental support. A college student-athlete’s exposure to mental health training, perceived level of needed support, and level of support sought did not appear to be suicide predictors.

Discussion

In this study, we investigated whether preventing suicide deaths requires the identification of factors that are associated with people’s risk of suicidal behavior. Commonly cited risk factors for suicidal thoughts and behaviors are depression and inadequate support. Association between major depressive disorder (MDD) and suicide attempts or ideation has been well-documented. Accordingly, depression has been considered a necessary or sufficient cause of suicidal thoughts. But much is unknown about the characteristics that increase suicide risk among people living with depression (Bradvik, 2018). Many mechanisms could play a role in suicidal behavior among people with MDD, and, although suicidal behavior occurs among people with major depressive disorder, depression is not necessarily a useful tool for understanding the complexity of suicide (Orsolini et al., 2020).


Most people with depression do not attempt suicide. Diagnosis of MDD requires a simultaneous presentation of several specific symptoms. Approximately, 17 million American adults will have symptoms of MDD each year, but only around 45,000-50,000 Americans will die by suicide during that same time. Considered independently of other risk factors, MDD may put one at greater risk, meaning that those with this disorder are more likely than those without it to die by suicide. But still very few of those with MDD will go on to die by suicide; reliance on depression to predict suicidality is inadvisable. This is supported by Ribeiro et al. (2018), who reviewed existing literature on the subject and showed that although depressive symptoms were reported to confer risk of suicidality, the effects were weaker than expected.

Melhem et al. (2019) demonstrated that the most severe depressive symptoms and variability over time were the only predictors of suicide attempt in young adults, especially when combined with other factors (e.g., childhood abuse, history of attempt, substance use disorder, and parental attempt). But prediction was marginally better than chance, perhaps because suicidal risk varies during a psychiatric illness and may be linked to other factors that appear during depressive episodes. Orsolini et al. (2020) showed that anxiety disorders co-occurring with MDD are among the main predictors of attempts. Several factors interact and contribute to suicidal behavior and death by suicide. These may include major depressive disorder, but interactions with other factors, such as genetic vulnerability, stress, psychiatric comorbidities, and social aspects need to be evaluated to improve prevention (Orsolini et al., 2020).
Results from our research showed a moderate negative correlation between the suicide predictor and score on the PHQ-9, challenging the assumption that depression is a necessary or sufficient cause of suicidal thoughts. This lends support to the idea that traditional risk factors can be problematic and that their predictive value has not improved over the past 50 years (Franklin et al., 2017; Fortune & Hetrick, 2022).

Bradvik (2018) also acknowledged that depression is related to suicidal ideation and attempt but is not a good predictor. Bradvik (2018) pointed to results from the Australian Rural Mental Health Study in which only 364 out of 1051 respondents reported life-time depression. Of those 364 respondents, 48% reported life-time suicidal ideation and 16% reported a suicide attempt. Gender, age of depression onset, and possibly psychiatric comorbidities were somewhat predictive of suicide behavior, but no other predictive factors were revealed. These results were echoed by Melhem et al. (2019).

The limits of risk factors to accurately predict suicide is further strengthened by our finding that an increase in emotional social support was weakly associated with an increase in suicide risk, contradicting earlier research that showed suicidal distress was worse when emotional social support was low (Ayub, 2015; Otsuki et al., 2019). Similarly, instrumental social support (i.e., support that helps people with practical tasks) was weakly associated with suicide risk, contradicting findings from Otsuki et al. (2019).
After a concussion, athletes experience a range of psychological symptoms, with depression and anxiety being among the most reported (Kontos et al., 2012). Symptoms can include loss of interest in activities that were once enjoyable, persistent sadness, physical and mental fatigue, and changes in sleep patterns. These negative outcomes may be more pronounced in athletes who attach a great degree of importance to the athlete’s role in relation to other activities (Brewer et al., 1993; Raedeke & Smith, 2001) and can be made worse by changes in lifestyle, the loss of social support that team members provided, and even personality traits. One such trait is maladaptive perfectionism.
Maladaptive perfectionists are overly critical of mistakes. They strive for excessively high and ultimately unobtainable goals. This usually results in failure, which can be painful, especially for athletes with maladaptive perfectionism, who may lack resilience to bounce back from stressful experiences. This unhealthy perfectionism is associated with higher levels of depressive symptoms (Egan et al., 2011; Olmedilla et al., 2022). Additionally, perfectionists can struggle with time management, not setting realistic timelines for getting things done or because they are paralyzed by the prospect of failure. Time management is one of the most difficult aspects of participating in college sports (Rothschild-Checroune et al., 2013).

Taken together, injury and concussion, personality traits (e.g., maladaptive perfectionism), and external factors (e.g., time constraints) can contribute to negative mental health outcomes among student-athletes and may increase suicidal distress. College athletic programs and university counseling centers are poised to improve our understanding of the nature of suicidal distress among student-athletes face and how to respond by making use of qualitative research methods, which we recommend. We urge university administrators to dedicate more resources to building and integrating academic and co-curricular resilience programs into their campuses and rely less on risk assessment that focuses on commonly cited factors (e.g., depression) to predict suicide.

Study Limitations
While efforts were made to decrease discomfort with the survey, it is possible college athletes felt pressure to respond in particular ways out of personal and/or athletic concerns. This study also relied upon self-reported data. Without having the ability to verify participant responses, there was no way of knowing the legitimacy or honesty of participants’ responses. The study was unable to control the multiple covariates or confounding variables that influence a college suicidality and mental health. Finally, our study lacked a detailed exploration of how specific socio-demographic characteristics, such as race, gender, and class status, might influence suicidal ideation and other risk behaviors among college athletes.

Future Research
The complex interplay between core risk factors in individuals and heightened suicide risk among athletes necessitates further exploration. Future research should focus on understanding the repercussions of escalated demands on athletes’ mental well-being, particularly the impact of significant situational factors such as career-ending injuries on their mental health and suicide vulnerability. Additionally, there is a need to delve into the connection between suicide rates, race, and gender among collegiate students for a more comprehensive understanding of these dynamics.

Conclusion
This study examined the relationship between college athletes’ risk of depression, suicidality, and their support system and whether preventing suicide deaths requires identification of commonly cited risk factor. The results are quite different from previous research findings, revealing a moderate negative correlation between the suicide predictor and scores on the PHQ-9, adding nuance to the presumption that depression is either a necessary or sufficient factor for the emergence of suicidal thoughts. College athletic programs and university counseling centers are poised to enhance our understanding of student-athletes’ suicidal distress and how to respond by making use of qualitative research methods. We strongly recommend adopting this strategy to address depression and suicidal ideation.

Applications in Sport
Studying suicide in college sports has practical applications that can help improve the well-being and safety of college athletes. By examining the factors that contribute to suicidal ideation and behavior in college sports, researchers and practitioners can develop targeted interventions and support systems to address mental health challenges. For instance, such studies may lead to the creation of tailored mental health resources for student-athletes, including counseling services and peer support networks. Furthermore, understanding the unique stressors faced by student-athletes, such as performance pressure and balancing academics with athletics, can inform the design of preventative measures such as stress management and resilience training programs. Additionally, awareness campaigns can be created to destigmatize mental health struggles in sports, encouraging athletes to seek help when needed. Overall, studying suicide in college sports can lead to a safer and more supportive environment for student-athletes, promoting their overall health and success.

References

References
1. American Psychological Association. (2020). Patient Health Questionnaire. https://www.apa.org/pi/about/publications/caregivers/practice-settings/assessment/tools/patienthealth#:~:text=PHQ%2D9%20scores%20%3E%2010%20had,been%20shown%20to%20be%2high.
2. Armstrong, S., & Oomen-Early, J. (2009). Social connectedness, self-esteem, and depression symptomatology among collegiate athletes versus non-athletes. Journal of American College Health, 57(5), 521-526.
3. Ayub, N. (2015). Predicting suicide ideation through intrapersonal and interpersonal factors: The interplay of Big-Five personality traits and social support. Personality and Mental Health, 9(4), 308-318.
4. Banu, P. R. (2019). Depression among athletes and non-athletes university students. International Journal of Social Sciences, 7(5-III), 1565-1569.
5. Barclay, N., Kelley, K. A., Brausch, A. M., Muehlenkam, J. J., & Nadorff, M. R. (2023). Changes in the suicide risk behaviors of American college students over time: An analysis of three universities. Suicide & Life-Threatening Behavior, 53(5), 764-775.
6. Bradvik, L. (2018). Suicide risk and mental disorders. International Journal of Environmental Research and Public Health, 15(9), 2028.
7. Brewer, B. W., Van Raalte, J. L., & Linder, D. E. (1993). Athletic identity: Hercules’ muscles or Achilles heel? International Journal of Sport Psychology, 24(2), 237–254.
8. Carter-Francique, A. (2015). Examining the value of social capital and social support for Black student-athletes’ academic success. Journal of African American Studies, 19(2), 157-177.
9. Centers for Disease Control and Prevention. (2023). Youth risk behavior survey: Data summary and trends report. https://www.cdc.gov/healthyyouth/data/yrbs/pdf/YRBS_Data-Summary-Trends_Report2023_508.pdf.
10. Centers for Disease Control and Prevention (2021). Suicide data and statistics. https://www.cdc.gov/suicide/suicide-data-statistics.html.
11. Costanza, A., Radomska, M., Zenga, F., Amerio, A., Aguglia, A., Serafini, G., Amore, M., Beradelli, I., Ojio, Y., & Nguyen, K. (2021). Severe suicidality in athletes with chronic traumatic encephalopathy: A case series and overview on putative etiopathogenetic mechanisms. International Journal of Environmental Research and Public Health, 18(3), 876.
12. DaCosta, A., Grueninger, K., Hurt, S., Crane, A., Webbe, F. M., & LoGalbo, A. (2020). A-11 comparison of the PHQ-9 and ImPACT affective symptom cluster scores in measuring depression at baseline among college athletes. Archives of Clinical Neuropsychology, 35(5), 607.
13. Defreese, J., & Smith, A. (2014). Athlete social support, negative social interactions, and psychological health across a competitive sport season. Journal of Sports Sciences, 32(15), 1454-1464.
14. DiMillo, J., Hall, N. C., Ezer, H., Schwarzer, R., & Körner, A. (2017). The Berlin Social Support Scales: Validation of the Received Support Scale in a Canadian sample of patients affected by melanoma. Journal of Health Psychology, 24(13), 1785-1795.
15. Egan, S. J., Wade, T. D., & Shafran, R. (2011). Perfectionism as a transdiagnostic process: A clinical review. Clinical Psychology Review, 31, 203-212.
16. Faul, F., Erdfelder, E., Lang, A.G., & Buchner, A. G. (2007). *Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical Sciences. Behavior Research Methods, 39(2), 175-191.
17. Fortune, S., & Hetrick, S. (2022). Suicide risk assessments: Why are we still relying on these a decade after the evidence showed they perform poorly? Australian & New Zealand Journal of Psychiatry, 56(12), 1529-1534.
18. Franklin, J. C., Ribeiro, J. D., Fox, K. R., Bentley, K. H., Kleiman, E. M., Huang, X., …Nock, M. K. (2017). Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research. Psychological Bulletin, 143(2), 187-232
19. Gorczynski, P., Miller-Aron, C., Moore, M. A., & Reardon, C. (2024). The epidemiology of mental health symptoms and disorders amongst elite athletes and the evolution of mental health literacy. Mental Health Considerations in Athletes, 43(1), 1-11.
20. Gupta, R., Agrawal, R. (2021). Are the concerns destroying mental health of college athletes? A Qualitative analysis portraying experiences amidst COVID-19 ambiguities. Analyses of Social Issues & Public Policy, 21(1), 621-639.
21. Hui, Z., Guo, K., Huang, W. B., Wu, J., Ma, X., Jia, S., & Xing, Z. (2023). Relationships between college students’ exercise motivation and mental health: Chain mediating effect of perceived social support and resilience. Social Behavior & Personality, 51(8), 1-10.
22. Kontos, A. P., Covassin, T., Elbin, R. J., & Parker, T. (2012). Depression and neurocognitive performance after concussion among male and female high school and collegiate athletes. Archives of Physical Medicine and Rehabilitation, 93(10), 1751-1756.
23. Kroenke, K., Spitzer, R. L., & Williams, J. B. (2011). The PHQ-9: Validity of a brief depression severity measure. Journal of General Internal Medicine, 16(9), 606-613.
24. LoGalbo, A., DaCosta, A., & Webbe, F. (2022). Comparison of the PHQ-9 and ImPAC symptom cluster scores in measuring depression among college athletes. Applied Neuropsychology: Adult, 29(4), 703-709.
25. MacDonald, H., & Neville, T. (2023). Promoting college students’ mindfulness, mental health, and self-compassion in the time of COVID-19: Feasibility and efficacy of an online, interactive mindfulness-based stress reduction randomized trial. Journal of College Student Psychotherapy, 37(3), 260-278.
26. Madan, A., Frueh, C. B., Allen, J. G., Eillis, T. E., Rufino, K. A., Oldham, J. M., & Fowler, C. (2016). Psychometric reevaluation of the Columbia – Suicide Severity Rating Scale: Findings from a prospective inpatient cohort of severely mentally ill adult. Journal of Clinical Psychiatry, 77(7), 867-873.
27. Maron, B. J., Haas, T. S., Murphy, C. J., Ahluwalia, A., & Rutten-Ramos, S. (2014). Incidence and causes of sudden death in the U.S. college athletes. Journal of American College of Cardiology, 63(16), 1636-1643.
28. Melhem, N. M., Porta, G., Oquendo, M. A., Zelazny, J., Keilp, J. G., Iyengar, S., … Brent, D. A. (2019). Severity and variability of depression symptoms predicting suicide attempt in high-risk individuals, JAMAPsychiatry, 76(6), 603-613.
29. Miller, K. E., & Hoffman, J. H. (2009). Mental well-being and sport-related identities in college students. Sociology of Sport Journal, 26(2), 335-356.
30. Moore, M. A. (2017). Stepping outside of their comfort zone: Perceptions of seeking psychosocial services amongst college athletes. Journal of Issues in Intercollegiate Athletics, Special Issue, 130-144.
31. Moore, M. A., & Abbe, A. (2021). The National Association of Intercollegiate Athletics substance use and abuse survey. Journal of Issues in Intercollegiate Athletics, 14, 95-114.
32. Moore, M. A., Gorczynski, P., & Miller-Aron, C. (2022). Mental health literacy in sport: The role of the social work profession. Social Work, 67(3), online. National Collegiate Athletic Association. (2022). NCAA student-athlete well-being study. https://www.ncaa.org/sports/2020/5/22/ncaa-student-athlete-well-being-study.aspx.
33. Olmedilla, A., Aguilar, J. M., Ramos, L. M., Trigueros, R., & Cantón, E. (2022). Perfectionism, mental health, and injuries in women footballers. Journal of Sport Psychology, 31(1), 49-56.
34. Orsolini, L., Latini, R., Pompili, M., Serafini, C., Volpe, U., Vellante, F. … De Bearardis, D. (2020). Understanding the complex of suicide in depression: From research to clinics. Psychiatry Investigation, 17(3), 207-2021.
35. Otsuki, T., Tomata, Y., Zhang, S., Tanji, F., Sugawara, Y., & Tsuji, I. (2019). The association between emotional and instrumental social support and risk of suicide death: A population-based cohort study. Journal of Psychiatric Research, 114, 141-146.
36. Posner, K., Brown, G. K., Stanley, B., Brent, D. A., Yershova, K. V., Oquendo, M. A., Currier, G. W., Melvin, G. A., Greenhill, L., Shen, S., & Mann, J. J. (2011). The Columbia – Suicide Severity Rating Scale: Initial validity and internal consistency findings from three multisite studies with adolescents and adults. The American Journal of Psychiatry, 168(12), 1266-1277.
37. Prinz, B., Dvořák, J., & Junge, A. (2016). Symptoms and risk factors of depression during and after the football career of elite female players. British Journal of Medicine and Sport: Open Sport & Exercise Medicine, 2(1), e000124.
38. Raedeke, T. D., & Smith, A. L. (2001). Coping with stressors in sport: A conceptual model. Journal of Sport & Exercise Psychology, 23, 528-541.
39. Rao, A. L., Asif, I. M., Drezner, J. A., Toresdahl, B. G., & Harmon, K. G. (2015). Suicide in National Collegiate Athletic Association (NCAA) athletes. Sports Health, 7(5), 452-457.
40. Ribeiro, J. D., Huang, X., Fox, K. R., & Franklin, J. C. (2018). Depression and hopelessness as risk factors for suicide ideation, attempts and death: Meta-analysis of longitudinal studies. British Journal of Psychiatry, 212(5), 279-286.
41. Rosenthal, S. R., Noel, J. K., Edwards, Z. C., Sammartino, C. J., & Swanberg, J. E. (2023). Risk factors for suicide ideation among Rhode Island college students. Rhode Island Medical Journal, 106(3), 42-47.
42. Rothschild-Checroune, E., Gravelle, F., Dawson, D., & Karlis, G. (2013). Balancing academic and athletic time management: A qualitative exploration of first year student athletes’ university football experiences. Society and Leisure, 35(2), 243-261.
43. Salehian, M. H., Gursoy, R., Aftabi, G. R., Sardarudi, M. T., & Ancari, Z. D. (2012). Comparison of depression between university athletes and non-athletes. European Journal of Experimental Biology, 2(4), 1008-1011.
44. Schmiedehaus, E., Snyder, E., Perrotte, J., Deason, R., Howard, K., & Cordaro, M. (2023). The ongoing mental health plight of depressed college students: Clinical recommendations and the importance of early screening and detection. Issues in Mental Health Nursing, 44(6), 562-570.
45. Schulz, U., & Schwarzer, R. (2004). Long-term effects of spousal support on coping with cancer after surgery. Journal of Social and Clinical Psychology, 23(5), 716-732.
Substance Abuse and Mental Health Services Administration. (2017). National Survey of Drug Use and Health Survey. https://www.samhsa.gov/data/data-we-collect/nsduh-national-survey-drug-use-and-health.
46. Substance Abuse and Mental Health Services Administration. (2021). National Survey of Drug Use and Health Survey. https://www.samhsa.gov/data/sites/default/files/reports/rpt39443/2021_NNR_figure_slides.pdf.
47. Sullivan, M., Moore, M., Blom, L. C., & Slater, G. (2020). Relationship between social support and depressive symptoms in collegiate student athletes. Journal for the Study of Sports and Athletes in Education, 14(3), 192-209.
48. Syndergaard, S., Borger, J., Klenzak, S., Grello, A., & Adams, A. (2023). Implementation of Columbia – Suicide Severity Rating Scale (C-SSRS) as a universal suicide risk screening tool in high volume emergency department. Archives of Suicide Research, 27(2), 769-779.
49. Wolanin, A., Hong, E., Marks, D., Panchoo, K., & Gross, M. (2016). Prevalence of clinically elevated depressive symptoms in college athletes and differences by gender and sport.
British Journal of Sports Medicine, 50(3), 167–171.

2024-07-03T13:38:41-05:00July 5th, 2024|General, Research, Sport Education, Sports Studies and Sports Psychology|Comments Off on Navigating Darkness: College Athlete Suicide, Support Systems, and Shadows of Depression

Coaches’ Perspectives of the Influence of Safe Sport-Related Education

Authors: Anthony Battaglia1, Ph.D., Gretchen Kerr2, Ph.D., and Stephanie Buono2, Ph.D.

Corresponding Author:

Anthony Battaglia, Ph.D., CMPC 

Faculty of Kinesiology and Physical Education 

University of Toronto 

55 Harbord Street, ON, Canada, M5S 2W6 

Email: anthony.battaglia@mail.utoronto.ca 

Anthony Battaglia, Ph.D., CMPC is a Postdoctoral Fellow and lecturer in the Faculty of Kinesiology & Physical Education at the University of Toronto. His research interests focus on youth athletes’ sport experiences, relational dynamics in sport, athlete maltreatment, and strategies for advancing developmentally appropriate and safe sport.  

Gretchen Kerr, Ph.D. is a Full Professor and Dean of the Faculty of Kinesiology and Physical Education at the University of Toronto. She is also a co-Director of E-Alliance, the Canadian Gender Equity in Sport Research Hub.

Stephanie Buono, Ph.D. is a research associate in the Faculty of Kinesiology & Physical Education at the University of Toronto and an instructor in the Department of Applied Psychology & Human Development at the University of Toronto.

Coaches’ Perspectives of the Influence of Safe Sport-Related Education 

ABSTRACT

To combat growing concerns of sport being unsafe for athletes, compulsory safe sport education has been developed worldwide. Much of this education has focused on the role of the coach, largely due to their position of power, prevalence rates that highlight coaches as common perpetrators of harm, and their direct contact with athletes. However, there is a lack of research examining the impact of such education for coaching-related outcomes. The purpose of this study was to explore the influences of safe sport training on coaches’ knowledge and confidence, efficacy to support others, stress about athlete well-being, and stress related to safe sport issues. In an online survey, 1365 coaches reported completion of any of 12 possible safe sport training courses and their knowledge and confidence, efficacy to support others, stress about athlete well-being, and stress related to safe sport issues. Regression analyses indicated that completing any of the 12 safe sport-related training courses was related to perceived increased efficacy to support others. Completing a higher number of safe sport training courses was related to perceived increases in efficacy to support others and knowledge and confidence, but not stress related to safe sport or athlete well-being. All 12 courses were related to increased knowledge and confidence, and several courses were related to increased efficacy to support others and reduced safe sport stress, while one course was related to reduced stress about athlete-well-being. Future research is needed to examine whether improvements in coaching outcomes associated with safe sport training translate into practice.

Key Words: Safe Sport; Coaches; Education; Coaching Outcomes;

Over the last several years, numerous reports of concerning behaviors in sport, such as maltreatment have emerged worldwide (15, 25). Maltreatment, which refers to “volitional acts that result in or have the potential to result in physical injuries and/or psychological harm” (12, p. 3), which include psychological, sexual, physical abuse, and neglect, harassment, bullying, and discrimination. To combat such concerns, policies and educational initiatives have been developed and implemented under the term ‘safe sport’ (26). The term safe sport initially emerged in response to scandals involving sexual abuse but has since expanded to refer to participation in sport free from all forms of violence, abuse, discrimination, and harassment (21, 39). More recently, broader conceptualizations of safe sport have also considered issues of environmental and physical safety (e.g., dysfunctional equipment, performance enhancing drugs), and the optimization of the sport experience (i.e., inclusive, accessible, growth-enhancing, and rights-based participation for all) (18). To advance safe sport, compulsory education has been developed; examples of existing safe sport education programmes include Australia’s Play by the Rules, U.S. Center for SafeSport Training, and the UK’s Child Protection in Sport Unit (24, 26).

Although safe sport education is needed for all sport stakeholders, including athletes, coaches, parents, administrators, officials and support staff, to-date, education has focused largely on coach-athlete dynamics, addressing issues such as harmful coaching practices, power relations, and duty to report harm (24, 26). There is a strong rationale for safe sport training focused on coaches. Consistent across many bodies of research in sport is acknowledgement of the presence and effects of the position of power and authority held by coaches over stakeholders in the sport ecosystem, including subordinate coaches, parents, athletes, and administrators (23, 38). When used inappropriately, these positions of power leave others vulnerable to experiences of harm. For example, psychological abuse (or what some refer to as psychological violence), the most prevalent form of athlete maltreatment, is most often perpetrated by coaches (42, 45, 48). Given their direct contact with other coaches, support staff, athletes and/or teams daily, coaches also significantly impact the type of culture promoted (e.g., win-at-all-costs versus caring or athlete-centred) and the nature and quality of athletes’ experiences (32). Coaches who are provided professional development and educational opportunities regarding positive sport practices are more likely to create environments where athletes experience enjoyment, competence, meaningful relationships, learning, satisfaction, reduced anxiety, and sport maintenance (6, 16, 36).

Although growing awareness of athlete maltreatment and the role of the coach in preventing these experiences has resulted in the proliferation of safe sport education initiatives for coaches globally, little research exists on the impact of such education for coaching-related outcomes (24, 26). In 2013, McMahon (28) investigated how a narrative pedagogical approach (i.e., athletes’ stories) might help swim coaches from amateur and elite levels understand the welfare implications for athletes subjected to emotionally or physically abusive coaching practices. Findings revealed that coaches gained increased empathy and undertook a more athlete-centered approach to coaching post-education, however, dominant cultural ideologies (e.g., winning) persisted in the coaches’ thinking and practice. Likewise, in 2018, Nurse (30) examined child sexual abuse prevention training for adults who work with children in schools, churches, and athletic leagues; with regards to coaches specifically, the training improved coaches’ knowledge on the topic and increased their confidence in their ability to identify abuse. These preliminary findings highlight the potential benefits of training for coaches; however, it is important to note that the education programmes were restricted to specific populations, sports, forms of harm, small sample sizes, and the effects of long-term behavioral change remained unclear. Further research examining the impact of safe sport training for coaches is required.

In Canada, the country of interest in this study, safe sport educational modules (e.g., NCCP Make Ethical Decisions, Safe Sport Training) (7, 9) have been developed by the Coaching Association of Canada (CAC), which is responsible for certifying and educating coaches across Canada. The CAC has also promoted safe sport standards and expectations for organizations and its coaches, including the Responsible Coaching Movement- a pledge to learn and apply consistent safety principles. The pillars of the Responsible Coaching Movement include the Rule of Two, which attempts to ensure all interactions and communications are in open, observable, and justifiable settings; background screening; and ethics training (8). In the province of Ontario, the Coaches Association of Ontario- an independent, non-profit organization that supports coaches from community level to high performance across all sports in Ontario- has adopted similar safe sport efforts and developed resources, such as Safe Sport 101 and the Ontario Coaches Conference (10). The goals of such initiatives include but are not limited to improving the knowledge of coaches with respect to safe sport, increasing their confidence in enacting desirable coaching behaviors, creating positive sport climates, and facilitating the holistic development of athletes. To-date, the extent to which these educational initiatives meet these goals for Canadian coaches has not been examined.

While safe sport education for coaches has commonly focused on enhancing knowledge of harmful or prohibited conduct, enhancing confidence in using desired behaviors, and supporting stakeholders’ (e.g., athletes, coaches, support staff) development and well-being, there remains a lack of research examining the influence of safe sport training on coaching-related outcomes (24, 26). In this study, the constructs of knowledge, confidence, efficacy, and stress were of interest. Despite recognizing their influential role, many coaches admit inadequate knowledge to cultivate safe sport environments (25); as cultivating safe sport environments is also a collective effort, it remains important that coaches feel efficacious in their ability to support all participants (31). Given the prevalence of mental health challenges in sport, coaches have expressed stress related to supporting athletes’ mental well-being (1, 3). Further, in response to the public attention paid to cases of athlete maltreatment and the focus on coaches as perpetrators of harm, coaches have reportedly felt stress about potential false accusations; specifically, concerns of negative touch have been identified in research and practice, resulting in coaches and sport personnel being fearful and unsure of how to be around athletes with whom they interact (40).

The purpose of this study therefore to explore the influences of safe sport training on Ontario coaches’ knowledge and confidence, efficacy to support others, stress about athlete well-being, and stress related to safe sport issues. Specifically, the first objective was to examine whether safe sport training improved coaches’ knowledge and confidence, efficacy to support others, stress about athlete well-being, and stress related to safe sport issues. The second objective was to examine whether the effect of safe sport training on coaches increased with the number of safe sport training courses. The third objective was to examine whether certain courses were related to coaches’ knowledge and confidence, efficacy to support others, stress about athlete well-being, and stress related to safe sport issues.

Methods

Procedures

This study was conducted in partnership with the Coaches Association of Ontario (CAO). CAO is an independent, non-profit organization that supports coaches across all levels and sports in Ontario. Ontario has the largest population of all provinces in Ontario with over 15 million people and one in four Ontarians have coached in their lifetime (10). The CAO selected the safe sport-related courses of interest for evaluation (see Table 1). As such, within the context of the current study, a broad perspective of safe sport (i.e., from injuries to drug-free sport, planning appropriate practices, and maltreatment) was adopted. Upon receiving approval from the University of Toronto Health Sciences Research Ethics Board, coaches were contacted through the Coaches Association of Ontario (CAO) email listserv and social media posts (Facebook, Instagram, Twitter). Recruitment communication provided details about study eligibility/requirements, the purpose of the study, the voluntary nature of the study, confidentiality and anonymity, and the link to the online survey. The survey was administered with RED Cap electronic data capture. Participants were required to meet the following eligibility criteria to complete the online survey: 1) Ontario resident; 2) over the age of 16; and 3) had coached in the last two years. Following the confirmation of eligibility, participants were able to complete the survey, which took approximately 15-25 minutes (M=19.25) to complete.

Table 1. An overview of the Safe Sport Education modules evaluated in the current study.

CourseOverview
NCCP Emergency Action Planning https://coach.ca/nccp-emergency-action-planUpon completion of this module, coaches will be able to: describe the importance of having an EAP; identify when to activate the EAP; explain the responsibilities of the charge person and call person when the EAP is activated; and create a detailed EAP that includes all required information for responding to an emergency.
NCCP Planning a Practice https://coach.ca/nccp-planning-practiceUpon completion of this module, coaches will be able to: explain the importance of logistics in the development of a practice plan; establish an appropriate structure for a practice; and identify appropriate activities for each part of the practice. To receive full credit for this module, coaches must also complete NCCP Emergency Action Planning.
NCCP Making Head Way https://coach.ca/nccp-making-head-way-sportUpon completion of this module, coaches will understand how to: prevent concussions; recognize the signs and symptoms of a concussion; what to do when they suspect an athlete has a concussion; and ensure athletes return to play safely.
NCCP Leading Drug-Free Sport https://coach.ca/nccp-leading-drug-free-sportUpon completion of this module, coaches will be able to: understand and demonstrate their role in promoting drug free sport; assist athletes to recognize banned substances and the consequences as identified by the Canadian Centre for Ethics in Sport; reinforce the importance of fair play and the NCCP Code of Ethics; educate and provide support to athletes in drug testing protocols; and inform athletes on nutritional supplements.
NCCP Prevention and Recovery https://coach.ca/nccp-prevention-and-recoveryUpon completion of this module, coaches will be able to: identify common injuries in sport, prevention and recovery strategies; design and implement programs/activities to optimize athlete training, performance and recovery; and support athletes’ return to sport through awareness and proactive leadership.
Commit to Kids https://protectchildren.ca/en/get-involved/online-training/commit-to-kids-for-coaches/Upon completion of this module, coaches will be able to: understand and recognize child sexual abuse and the grooming process; ways in which to handle disclosures of sexual abuse; the implications of sexual abuse; how to create a child protection code of conduct; and ways in which to enhance child and youth safety in sport.
Standard First Aid and CPR https://www.redcross.ca/training-and-certification/course-descriptions/first-aid-at-home-courses/standard-first-aid-cprUpon completion of this module, coaches will be able to: understand and apply vital life-saving knowledge/skills essential for meeting a variety of workplace/professional requirements.
HeadStartPro https://headstartpro.com/coach-course/Upon completion of this module coaches will be able to: understand and develop a set of coaching tools to improve team performance and injury-prevention; and assist athletes and/or teams in achieving their full potential with performance-driven injury prevention training.
NCCP Making Ethical Decisions https://coach.ca/nccp-make-ethical-decisionsUpon completion of this module coaches will be to: analyze challenging situations and determine the moral, legal, or ethical implications; and apply the NCCP Ethical Decision-Making Model to respond in ways that are consistent with NCCP Code of Ethics.
NCCP Empower+ (Creating Positive Sport Environments) https://coach.ca/nccp-creating-positive-sport-environmentUpon completion of this module, coaches will be able to: describe the characteristics and benefits of participant-centered coaching; explain the types of harm that may occur when a coach misuses their power; respond to suspicions or knowledge of maltreatment; and implement positive coaching strategies to foster learning, performance, and create a safe sport environment.
CAC Safe Sport https://coach.ca/safe-sport-trainingUpon completion of this module, coaches will be able to: understand the critical role of all stakeholders in promoting safe sport, how the misuse of power leads to maltreatment, and principles of the Universal Code of Conduct; understand types of maltreatment and how to recognize signs and symptoms; and respond when maltreatment is suspected and create a safe sport culture for all participants.
Respect in Sport https://www.respectgroupinc.com/respect-in-sport/Upon completion of this module, coaches will be able to: recognize, understand, and respond to issues of bullying, abuse, harassment, and discrimination.

Note. For further detail on course descriptions and/or objectives see the corresponding webpages indicated in the table.

Participants

Participants were 1365 coaches from the Coaches Association of Ontario (CAO). Of the respondents, 61% identified as men (n=823), 38% identified as women (n=514; n=28 did not disclose), 86% identified as White (n=1087), while 4% (n=53) identified as Black, 4% (n=51) identified as East/Southeast Asian, 2% (n=31) identified as Indigenous, and less than 2% identified as Latinx (n=19), South Asian (n=18), Middle Eastern (n=16), or another race category (n=27). Coaches reported working in a variety of contexts including grassroots (e.g., recreational, community sport, house league, intramural; n=273, 22%), school sports (e.g., primary and secondary school; n=141, 11%), development (e.g. competitive, club, travel, city, all-star; n=600, 49%), post-secondary (e.g., Support, CCAA, OUA, Inter-university; n=74, 6%), provincial (e.g., Canada Games, National Championships, OHL; n=90, 7%), international (e.g., International Competitions, Worlds, Pan Am, Commonwealth, Olympics; n=36, 3%), and masters or professional (e.g., Senior, NHL, NBA, CEBL; n=20, 2%). Coaches’ tenure in their current position ranged from 1-10 years (n=804, 65%), 11-20 years (n=238, 19%), and more than 20 years (n=194, 16%). Training in safe sport was required for 78% of coaches (n=782) and provided free of cost for 51% of coaches (n=535).

Measures

Safe sport training was measured with a “yes” or “no” response from coaches to indicate whether they had taken each of the following courses: NCCP[1] Emergency Action Planning, NCCP Planning a Practice, NCCP Making Head Way, NCCP Leading Drug Free Sport, NCCP Prevention and Recovery of Injury, Commit to Kids, Standard First Aid and CPR, HeadStart, NCCP Make Ethical Decisions, NCCP Empower+ (Creating Positive Sport Environments), CAC Safe Sport Training, Respect in Sport.

Knowledge & confidence to create a safe sport environment was measured using a 3-item scale (a=.7), which asked coaches about their knowledge of safe sport concepts and their confidence in creating a safe sport environment. Example items included, “I am confident in my abilities to create a safe sport environment” and “I am familiar with the responsible coaching movement.” Coaches responded to each item on a scale from 1 (strongly disagree) to 5 (strongly agree).

Safe sport stress was measured using a 3-item scale (a=.68), which asked coaches about the stress they experience over creating a safe sport environment. An example item includes, “I often stress about being the subject of a harassment or abuse claims”. Coaches responded to each item on a scale from 1 (strongly disagree) to 5 (strongly agree).

Stress about athlete well-being was measured with 2 items (a=.59): “I often stress about my ability to manage athletes’ mental well-being”, and “I often stress about my ability to manage athletes’ physical well-being.” Coaches responded to each item on a scale from 1 (strongly disagree) to 5 (strongly agree).

Efficacy to support others was measured using a 5-item scale (a=.87), which asked coaches about how confident they feel in their ability to support athletes and other coaches. An example item includes “I am confident in my abilities to support my athletes with performance issues”. Coaches responded to each item on a scale from 1 (strongly disagree) to 5 (strongly agree).



[1] NCCP refers to the National Coaching Certification Program offered by the Coaching Association of Canada.

Safe sport stress was measured using a 3-item scale (a=.68), which asked coaches about the stress they experience over creating a safe sport environment. An example item includes, “I often stress about being the subject of a harassment or abuse claims”. Coaches responded to each item on a scale from 1 (strongly disagree) to 5 (strongly agree).

Stress about athlete well-being was measured with 2 items (a=.59): “I often stress about my ability to manage athletes’ mental well-being”, and “I often stress about my ability to manage athletes’ physical well-being.” Coaches responded to each item on a scale from 1 (strongly disagree) to 5 (strongly agree).

Efficacy to support others was measured using a 5-item scale (a=.87), which asked coaches about how confident they feel in their ability to support athletes and other coaches. An example item includes “I am confident in my abilities to support my athletes with performance issues”. Coaches responded to each item on a scale from 1 (strongly disagree) to 5 (strongly agree).

Data Analysis

To investigate the first research objective, an initial correlation analysis was conducted to examine whether having any safe sport training was related to increases in coaching outcomes. The safe sport training variable was transformed so that coaches who answered “yes” to completing any of the safe sport training courses were coded as 1 and coaches who had answered “no” to completing all the safe sport training courses were coded as 0 (i.e., no SS training=0, any SS training=1). This variable was included in a correlation analysis with all coaching outcomes: knowledge & confidence, safe sport stress, stress over athlete well-being, and efficacy to support others. To investigate the second research objective, four separate linear regression models were constructed with the sum of completed safe sport training courses (range =1-12) as the independent variable, and the following coaching outcomes as respective dependent variables: knowledge & confidence, safe sport stress, stress about athlete well-being, and efficacy to support others. In all four models, the coaching context, whether training was required (0=no, 1=yes), and whether training was free (0=no, 1=yes) were included as covariates. To address the third research objective, ANOVAs were conducted with individual safe sport courses as independent variables, and the following coaching outcomes as dependent variables: knowledge & confidence, efficacy to support others, safe sport stress, stress about athlete well-being and efficacy to support others. All analyses were conducted using IBM SPSS Statistics (Version 28) (20).

Results

Safe Sport Training & Coaching Outcomes

Range, mean, and standard deviation scores for all variables included in subsequent analyses are included in Table 2. Of the coaches in this sample, 65% (n=890) reported completing at least one of the education courses, while 35% (n=475) reported not having taken any of the education courses. Results of the correlation analysis (Table 3) demonstrate that having any safe sport training was significantly related to increases in efficacy to support others, but not knowledge and confidence, safe sport stress, or stress about athlete well-being.

Table 2. Descriptive statistics for all variables

RangeMeanSD
Coaching Context (0=Grassroots)0-71.811.37
Training Required (0=No)0-1.59.49
Training Free (0=No)0-1.49.50
Any Safe Sport Training0-1.6.13
Number of Safe Sport Training0-123.643.42
Knowledge & Confidence-4-201
Safe sport stress-4-201
Stress over athlete well-being-4-201
Efficacy to Support-4-201
n=1365   
Table 3. Correlations between any safe sport training and coaching outcomes
Any Safe Sport TrainingKnowledge ConfidenceSafe Sport StressAthlete WB StressEfficacy to Support
Any Safe Sport Training1.00.06*.04.002-.03
Knowledge Confidence.06*1.00-.02.00.29**
Safe Sport Stress.04-.021.00.34**-.09**
Athlete WB Stress.002.00.34**1.00-.20**
Efficacy to Support-.03.29**-.09**-.20**1.00
**. Correlation is significant at the 0.01 level
*. Correlation is significant at the 0.05 level

Number of Safe Sport Training & Coaching Outcomes

Figure 1 demonstrates the number of safe sport courses taken by coaches in this sample based on influential covariates such as coaching context, training requirement, and training accessibility (i.e., whether the training was provided free of cost). Significantly more safe sport courses were completed by coaches in Post-Secondary, Provincial, International, Masters and Professional contexts, and by coaches for whom training and education is required and free. 

Initial correlation analysis (Table 4) demonstrated being a coach at a high level of competition (e.g., provincial, international) was related to taking more safe sport courses, higher knowledge and confidence, and higher efficacy to support others. Having access to free training was related to taking more safe sport courses and higher knowledge and confidence. Finally, taking more safe sport training courses was related to higher knowledge and confidence and efficacy to support others. Safe sport stress and stress about athlete well-being were not related to any of the independent variables.

Table 4. Correlations between number of safe sport training courses, covariates and outcome variables
Coaching ContextTraining RequiredTraining FreeSafe Sport TrainingKnowledge ConfidenceSafe Sport StressAthlete WB StressEfficacy to Support
Coaching Context1.00-.04-.03.11**.07**.01.00.08**
Training Required-.041.00.11**-.02.08**.06.03-.05
Training Free-.03.11**1.00.09**.08*.00-.06.01
Safe Sport Training.11**-.02.09**1.00.26**.05.01.10**
Knowledge Confidence.07**.08**.08*.26**1.00-.02.00.29**
Safe Sport Stress.01.06.00.05-.021.00.34**-.09**
Athlete WB Stress.00.03-.06.01.00.34**1.00-.20**
Efficacy to Support.08**-.05.01.10**.29**-.09**-.20**1.00
**. Correlation is significant at the 0.01 level
*. Correlation is significant at the 0.05 level

The results of the first regression analysis (Table 5) demonstrated that the number of safe sport training courses coaches completed was related to increases in knowledge and confidence and efficacy to support others, when training requirements, access to training, and context of the sport environment were held constant. The number of safe sport training courses coaches took was not related to safe sport stress or athlete well-being stress.

Table 5. Linear Regression Analyses for General Coach Training
Knowledge & ConfidenceSafe Sport StressAthlete WB StressEfficacy to Support
BSEBSEBSEBSE
Coaching Context.03.02.01.02.00.02.08*.02
Training Required.09*.07.06.07.03.07.04.08
Training Free.08*.06.01.06.06.06.001.06
Safe Sport Training.31**.01.05.01.003.01.12**.01
  
Adj. R-Square.12.01.00.03 
n=1365
**Coefficient is significant at the 0.01 level
*Coefficient is significant at the 0.05 level

Individual Safe Sport Courses and Coaching Outcomes

The results of the final analysis demonstrated that all courses were significantly related to improved knowledge and confidence. NCCP Emergency Action Planning, NCCP Leading Drug Free Sport, Commit to Kids, HeadStartPRO, and NCCP Empower+ (Creating Positive Sport Environments) were significantly related to reduced safe sport stress. Commit to Kids was significantly related to reduced athlete well-being stress. Finally, NCCP Planning a Practice, NCCP Leading Drug-free Sport, NCCP Prevention and Recovery, Commit to Kids, HeadStartPRO, NCCP Empower+ (Creating Positive Sport Environments), and CAC Safe Sport were significantly related to efficacy to support others (Table 6).

Table 6. Effects of Individual Safe Sport Courses
Knowledge ConfidenceSafe Sport StressAthlete WB StressEfficacy to Support Others
FSig.FSig.FSig.FSig.
NCCP Emergency Action Planning60.97<.0015.67.0171.45.2293.75.053
NCCP Planning a Practice53.82<.001.13.722.44.5097.23.007
NCCP Making Head Way64.15<.001.10.754.08.772.35.557
NCCP Leading Drug-free Sport72.82<.0015.65.018.25.61822.49<.001
NCCP Prevention and Recovery47.18<.0013.29.070.08.77714.21<.001
Commit to Kids35.88<.0015.16.0238.91.00311.29<.001
Standard First Aid and CPR17.96<.001.31.580.69.4069.73.002
HeadStartPRO7.08.00810.31.002.06.8149.15.003
NCCP Making Ethical Decisions22.26<.001.17.680.01.931.01.91
NCCP Empower+ (Creating Positive Sport Environments)15.21<.0017.92.04.315.57516.42<.001
CAC Safe Sport89.17<.001.16.6903.91.5328.41.004
Respect in Sport32.62<.001.07.797.07.7973.64.056
n=1365

Discussion

The purpose of this study was to explore the influences of safe sport training on sport coaches’ knowledge and confidence, safe sport-related stress, efficacy to support others, and stress about athlete well-being. Specific focus was directed towards examining the relationship between the number of safe sport courses completed and the effects of specific safe sport courses for these coaching outcomes. The results of this study demonstrated that having any training or education was related to increased efficacy to support others. Having completed a higher number of safe sport training courses was related to increased efficacy to support others and knowledge and confidence, and all safe sport courses were related to increased knowledge and confidence.  

Although a plethora of safe sport education exists to-date, a prominent criticism has been the lack of empirical evaluations examining the impact or effectiveness of such training (24, 26). The findings of the current study help to address this knowledge gap by providing preliminary, empirical evidence regarding the influence of safe sport education. According to the results, coaches in more professional contexts took more safe sport training courses, which supports the notion that at elite levels of sport, coaches may have more access to professional development opportunities and/or devote more time improving their coaching skills (11, 27). Coaches who were provided access to free training in the current study also took more safe sport courses. These findings suggest that when provided the opportunity, coaches engage in professional development, however, as issues of cost and accessibility remain prevalent barriers, the advancement and development for many coaches remains limited (19, 43. Online modalities have been advocated as a cost-effective, time efficient, and readily accessible way to educate coaches (13, 14) yet, for many coaches, online professional development opportunities still present financial demands. For example, of the twelve courses examined in the current study, only three (e.g., NCCP Emergency Action Planning, CAC Safe Sport, NCCP Making Headway) are listed as online and free for coaches; in the current study, it was not known if affiliated organizations where coaches instruct reimbursed education/training and, if so, for which courses. Access or lack thereof to safe sport-related education may impact the extent to which safe, inclusive, and welcoming spaces are promoted by all coaches (22, 47). This is particularly important for coaching at the youth sport level where the delivery of sport programmes is highly dependent on volunteers who, despite recognizing their critical role for nurturing developmentally appropriate and safe environments, often lack the requisite knowledge to do so (2, 44, 46).

The completion of more safe sport training courses and all courses examined in the current study was related to enhanced coaches’ knowledge and confidence. Exposing coaches to diverse topics which include but are not limited to safety, positive development, harmful practices, and mental health, are critical to improving coaches’ awareness and ability to create safe sport environments (6, 28, 30). The coaches also reported increased knowledge of the Rule of Two and the Responsible Coaching Movement; these safe sport efforts provide additional safety principles for Ontario and Canadian coaches more broadly on background screening, appropriate interactions, and ethics training (8). Findings may be interpreted to suggest that not only does safe sport education positively influence coaches’ knowledge and confidence to create safe environments but also facilitates greater awareness of safe sport efforts in the Canadian sport context, thus providing coaches with a more comprehensive perspective on ways to stimulate safer sport.

Nurturing athletes’ holistic development is a key responsibility of coaches; however, coaches may not have the necessary education and training to adequately support their athletes (41). The current findings indicate that the completion of more safe sport education as well as specific courses (e.g., NCCP Empower+, CAC Safe Sport) may nurture coaches’ expertise and confidence to actively support their athletes with personal and performance challenges. The extent to which athletes report positive coach-athlete dynamics and feel supported in their relationships with coaches has been known to influence whether they experience learning, growth, and safe sport environments (32). Safe sport training also influenced coaches’ confidence to support coaching peers/support staff with personal and performance issues; these findings are particularly important as learning by doing, having a coach mentor, and observing others are important sources of knowledge and development for coaches (43). Collectively, the improvements in coaches’ efficacy to support others (athletes and coaches) suggests that safe sport training may serve as an effective mechanism through which knowledge dissemination and learning amongst stakeholders is achieved.

Many coaches (uninformed on the benefits of positive touch) have adopted a risk-averse perspective when interacting with athletes (i.e., “no touching”) to avoid being accused of misconduct or having their behaviors misconstrued as harmful (33, 34). In the current study, no significant relationship resulted between the number of safe sport training courses completed and coaches’ perceived safe sport stress (e.g., fear of maltreatment allegations). Specific courses were identified as decreasing safe sport stress, however, some of the courses (e.g., NCCP Emergency Action Planning, HeadStartPro, NCCP Leading Drug-free Sport) focus on physical injury prevention and/or drug-free sport and do not necessarily provide broader content on maltreatment that might warrant the reported lower coach stress regarding potential accusations of harm or safe sport issues. Although coaches have commonly reported concerns about touching in sport (33), there has also been growing awareness of psychological harm and toxic cultures in sport (38, 48). The lack of reported stress regarding safe sport concerns may be reflective of coaches being less fearful of false accusations related to psychological forms of harm as opposed to sexual harms. As the survey questions referred to coach stress in relation to abuse and harassment claims broadly, further research attention is needed to assess whether education may impact coaches’ safe sport stress differently depending on the form of harm (e.g., sexual versus psychological).

It is also interesting that while safe sport education was related to coaches’ improved efficacy to support athletes with personal and performance issues, the number of completed courses was not significantly related to stress about managing athlete physical and mental well-being. Only one course (Commit to Kids) reduced coaches’ perceived stress for managing athlete well-being. Commit to Kids focuses exclusively on providing education on sexual harms; while education on sexual harms is needed to advance safe sport, psychological harm and neglect are reported far more frequently by athletes (25, 48) and thus coaches’ perceptions of their ability to manage athletes’ well-being may be limited in scope.

            NCCP Empower+ (Creating Positive Sport Environments) was associated with enhanced knowledge and confidence, improved efficacy to support others, and lower safe sport stress, whereas CAC Safe Sport Training was linked to improved knowledge and confidence and efficacy to support others. Interestingly, Commit to Kids was the only course to positively impact all coaching outcomes, despite focusing exclusively on sexual harms. As sexual harm continues to receive the most media and research attention (4, 25), education on sexual harms may be interpreted by coaches and those in the sport community to be most relevant and important for creating safe sport. Further, in Ontario and Canada more broadly, sport organizations frequently identify course equivalents where coaches may complete different courses, including CAC Safe Sport Training, Respect in Sport, NCCP Empower+, and Commit to Kids but still satisfy the safe sport-related requirements needed to instruct. The lack of an integrated approach and the various safe sport education options available may expose coaches to different experiences and levels of learning, thus providing a plausible explanation for the reported influences on coaching outcomes in the current study. To advance safe sport,evidence-informed education for coaches and stakeholders more broadly is needed (5, 47).

Limitations and Future Directions

Although this study contributes to research and practice in safe sport by providing insights into the reported benefits of safe sport education for coaches, the findings must be interpreted within the context of the current study. Considering the CAO selected the safe sport-related courses of interest for evaluation, a broad perspective of safe sport (i.e., injuries, drug-free sport, planning appropriate practices, maltreatment) was required. The data were also collected from coaches in a specific geographic region (Ontario, Canada) and thus many of the safe sport courses evaluated were exclusive to this coaching sample. The courses evaluated in the current study should not be considered an exhaustive list of all safe-sport courses; for example, since the completion of the study, several courses (e.g., Support Through Sport, Safe Sport 101 Playbook) have been revised and/or developed. Additionally, as the sport domain has been referred to one that reinforces toxic cultures, there are several education courses in Ontario and Canada more broadly on creating positive culture and inclusive environments (e.g., NCCP Coaching Athletes with a Disability), that were not included and require future consideration regarding their impact on coaches and advancing safe sport. 

The study findings highlighted a relationship between safe sport education and improvements in coach knowledge and confidence and efficacy to support others, suggesting that practitioners should explore ways to make safe sport education free of cost and accessible. However, as this study did not assess knowledge translation, future research is needed to examine if coaches’ improved knowledge, confidence and efficacy from education contributes to behavior change and the use of more developmentally appropriate and safe coaching practices. Organizational influence also remains an area of interest; for example, it would be beneficial to explore how an organization’s cultural values, priorities (e.g., win-at-all-costs vs holistic development), and support (e.g., free training), may impact coach education uptake and subsequently the effectiveness of safe sport education on coaching outcomes. Future researchers may consider a case study approach to examine the impact of safe sport education for coaches within a specific organization; for example, Likert-scales may be used to assess attitudes, beliefs, and perceptions, semi-structured interviews may help to gain deeper insights on coaches’ interpretations regarding safe sport courses, and participant observation may shed light on issues of coach behavior change resulting from safe sport education.

Conclusion

Safe sport education for coaches has been consistently advocated as a recommendation for advancing safe, inclusive, and welcoming environments, however, the influence of safe sport education remains largely unknown (24, 26). The current study contributes to the sport literature by providing an examination of the influences of safe sport training for coaches. Findings revealed a relationship between the number of safe sport training courses coaches completed and increases in their knowledge and confidence and efficacy to support others. However, the number of safe sport training courses completed was not associated with stress related to safe sport matters or athlete well-being. All safe sport courses were reportedly associated with improved coach knowledge and confidence. Several training courses were also linked to improvements in coaches’ efficacy to support others and reductions in their safe sport stress, with only one course contributing to coaches’ reduced stress related to athlete-well-being. Although the findings suggest favorable influences of safe sport training for coaches, the current study did not assess behavioral change. Future research is needed to explore whether reported improvements (e.g., knowledge and confidence) associated with safe sport education translates to coaching practice.

Applications in Sport

Safe sport education in the current study was reportedly associated with enhanced coach knowledge and confidence to create safe environments and efficacy to support athletes and other coaches/support staff. Unfortunately, as a large portion of the sport sector is run by a volunteer workforce (e.g., volunteer coaches), sport organizations remain reluctant to enforce training requirements for fear of further burdening these coaches who frequently report stress and burnout (2, 35). However, the extent to which sport organizations and their leaders prioritize and support safe sport, has been shown to impact the effectiveness of safe sport efforts (17, 37, 49). In some cases, merely having safe sport education initiatives may have little impact on creating and sustaining safer environments and appear as superficial gestures towards change, further reproducing harms (29, 31). Sport and coaching organizations are confronted with the challenge of maintaining low time and cost demands for many volunteer coaches while also providing adequate education for volunteer (and paid) coaches (19, 46).

Acknowledgements

The authors would like to thank the coaches who participated in this study along with Coaches Association of Ontario who contributed to the design and recruitment of this study.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. Battaglia, A., & Kerr, G. (2022). Examining the impact of COVID-19 on sport coaches. International Sport Coaching Journal10(1), 102-111. https://doi.org/10.1123/iscj.2022-0025
  2. Baxter, H., & Misener, K. E. (2022). Retaining volunteer coaches in child and youth sport. In Routledge Handbook of Coaching Children in Sport (pp. 412-420). Routledge.
  3. Bissett, J. E., Kroshus, E., & Hebard, S. (2020). Determining the role of sport coaches in promoting athlete mental health: A narrative review and Delphi approach. BMJ Open Sport & Exercise Medicine6(1), e000676. https://doi.org/10.1136/bmjsem-2019-000676
  4. Bjørnseth, I., & Szabo, A. (2018). Sexual violence against children in sports and exercise: A systematic literature review. Journal of child sexual abuse27(4), 365-385. https://doi.org/10.1080/10538712.2018.1477222
  5. Brackenridge, C. H., & Rhind, D. (2014). Child protection in sport: reflections on thirty years of science and activism. Social Sciences3(3), 326-340. https://doi.org/10.3390/socsci3030326
  6. Callary, B. & Gearity, B. (2019) Coach education and development in sport: Instructional strategies. Routledge.
  7. Coaching Association of Canada (2023). NCCP make ethical decisions. https://coach.ca/nccp-make-ethical-decisions
  8. Coaching Association of Canada (2023). Responsible coaching movement. https://coach.ca/sport-safety/responsible-coaching-movement
  9. Coaching Association of Canada (2023). Safe Sport training. https://safesport.coach.ca/
  10. Coaches Association of Ontario (2023). Programs and resources. https://www.coachesontario.ca/
  11. Côté, J., Erickson, K., & Duffy, P. (2013). Developing the expert performance coach. In D. Farrow, J. Baker, & C. MacMahon (Eds.), Developing sporting expertise (2nd ed., pp. 96-112). Routledge.
  12. Crooks, C. V. & Wolfe D.A. (2013). Child abuse and neglect. In E.J.  Mash & R. A. Barkley (Eds.), Assessment of Childhood Disorders (pp. 1-17). Guilford Press.
  13. Cushion, C. J., & Townsend, R. C. (2019). Technology-enhanced learning in coaching: A review of literature. Educational Review71(5), 631-649. https://doi.org/10.1080/00131911.2018.1457010
  14. Driska, A., & Nalepa, J. (2020). Self-paced online learning to develop novice, entry-level, and volunteer coaches. In B. Callary & B. Gearity (Eds.), Coach education and development in sport: Instructional strategies (pp. 166–177). Routledge.
  15. Fortier, K., Parent, S., & Lessard, G. (2020). Child maltreatment in sport: Smashing the wall of silence: a narrative review of physical, sexual, psychological abuses and neglect. British Journal of Sports Medicine54(1), 4-7. https://doi.org/10.1136/bjsports-2018-100224
  16. Gould, D. (2013). Effective education and development of youth sport coaches. President’s Council on Fitness, Sports and Nutrition: Research Digest14(4), 1-10.
  17. Gurgis, J. J., & Kerr, G. A. (2021). Sport administrators’ perspectives on advancing safe sport. Frontiers in sports and active living3, 630071. https://doi.org/10.3389/fspor.2021.630071
  18. Gurgis, J. J., Kerr, G., & Battaglia, A. (2023). Exploring stakeholders’ interpretations of safe sport. Journal of Sport and Social issues47(1), 75-97. https://doi.org/10.1177/01937235221134610
  19. Gurgis, J. J., Kerr, G. A., & Stirling, A. E. (2020). Investigating the barriers and facilitators to achieving coaching certification. International Sport Coaching Journal, 7(2), 189-199. https://doi.org/10.1123/iscj.2019-0043
  20. IBM Corp. (2022). IBM SPSS Statistics for MacOs (Version 28.0). IBM Corp. International Olympic Committee (2021). IOC Safe Sport initiatives: Overview. https://www.olympic.org/safe-sport/
  21. International Olympic Committee (2021). IOC Safe Sport initiatives: Overview. https://www.olympic.org/safe-sport/
  22. Johnson, N., Hanna, K., Novak, J., & Giardino, A. P. (2020). US center for SafeSport: Preventing abuse in sports. Women in Sport and Physical Activity Journal28(1), 66-71. https://doi.org/10.1123/wspaj.2019-0049
  23. Jowett, S., & Wachsmuth, S (2020). Power in coach-athlete relationships: The case of the women’s artistic gymnastics. In G. Kerr (Ed.), Women’s artistic gymnastics: Sociocultural perspectives (pp. 121-142). Routledge.
  24. Kerr, G., Stirling, A., & MacPherson, E. (2014). A critical examination of child protection initiatives in sport contexts. Social Sciences3(4), 742-757. https://doi.org/10.3390/socsci3040742
  25. Lang, M. (2021). Routledge handbook of athlete welfare. Routledge.
  26. MacPherson, E., Battaglia, A., Kerr, G., Wensel, S., McGee, S., Milne, A., … & Willson, E. (2022). Evaluation of publicly accessible child protection in sport education and reporting initiatives. Social Sciences11(7), 310. https://doi.org/10.3390/socsci11070310
  27. Martens, R. (2018). Successful coaching. Human Kinetics.
  28. McMahon, J. (2013). The use of narrative in coach education: The effect on short-and long-term practice. Sports Coaching Review2(1), 33-48. https://doi.org/10.1080/21640629.2013.836922
  29. Nite, C., & Nauright, J. (2020). Examining institutional work that perpetuates abuse in sport organizations. Sport Management Review23(1), 117-129. https://doi.org/10.1016/j.smr.2019.06.002
  30. Nurse, A. M. (2018). Coaches and child sexual abuse prevention training: Impact on knowledge, confidence, and behavior. Children and Youth Services Review88, 395-400. https://doi.org/10.1016/j.childyouth.2018.03.040
  31. Owusu-Sekyere, F., Rhind, D. J., & Hills, L. (2022). Safeguarding culture: towards a new approach to preventing child maltreatment in sport. Sport Management Review25(2), 300-322. https://doi.org/10.1080/14413523.2021.1930951
  32. Pills, S (2018). Perspectives on athlete-centred coaching. Routledge.
  33. Piper, H. (2014). Fear, risk, and child protection in sport: Critique and resistance. In H. Piper (Ed.), Touch in Sports Coaching and Physical Education (pp. 167-186). Routledge.
  34. Piper, H., Taylor, B., & Garratt, D. (2012). Sports coaching in risk society: No touch! No trust! Sport, Education and Society17(3), 331-345. https://doi.org/10.1080/13573322.2011.608937
  35. Potts, A. J., Didymus, F. F., & Kaiseler, M. (2019). Exploring stressors and coping among volunteer, part-time and full-time sports coaches. Qualitative Research in Sport, Exercise and Health11(1), 46-68. https://doi.org/10.1080/2159676X.2018.1457562
  36. Reynders, B., Vansteenkiste, M., Van Puyenbroeck, S., Aelterman, N., De Backer, M., Delrue, J., … & Broek, G. V. (2019). Coaching the coach: Intervention effects on need-supportive coaching behavior and athlete motivation and engagement. Psychology of Sport and Exercise43, 288-300. https://doi.org/10.1016/j.psychsport.2019.04.002
  37. Rhind, D. J., & Owusu-Sekyere, F. (2020). Evaluating the impacts of working towards the International Safeguards for Children in Sport. Sport Management Review23(1), 104-116. https://doi.org/10.1016/j.smr.2019.05.009
  38. Roberts, V., Sojo, V., & Grant, F. (2020). Organisational factors and non-accidental violence in sport: A systematic review. Sport Management Review23(1), 8-27. https://doi.org/10.1016/j.smr.2019.03.001
  39. Safe Sport International (2021). Abuse of athletes happens. http://www.safesportinternational.com/
  40. Tam, A., Kerr, G., & Stirling, A. (2020). Influence of the# MeToo movement on coaches’ practices and relations with athletes. International sport coaching journal8(1), 1-12. https://doi.org/10.1123/iscj.2019-0081
  41. Thelwell, R., Harwood, C., & Greenlees, I. (2017). The psychology of sports coaching: Research and practice. Routledge.
  42. US Center for SafeSport (2020). 2020 Athlete culture and climate survey. https://uscenterforsafesport.org/wp-content/uploads/2021/07/CultureClimateSurvey_ExternalReport_071421_Final.pdf
  43. Van Woezik, R. A., McLaren, C. D., Côté, J., Erickson, K., Law, B., Horning, D. L., … & Bruner, M. W. (2021). Real versus ideal: Understanding how coaches gain knowledge. International Sport Coaching Journal9(2), 189-202. https://doi.org/10.1123/iscj.2019-0043
  44. Vella, S., Oades, L., & Crowe, T. (2011). The role of the coach in facilitating positive youth development: Moving from theory to practice. Journal of Applied Sport Psychology23(1), 33-48. https://doi.org/10.1080/10413200.2010.511423
  45. Vertommen, T., Kampen, J., Schipper-van Veldhoven, N., Wouters, K., Uzieblo, K., & Van Den Eede, F. (2017). Profiling perpetrators of interpersonal violence against children in sport based on a victim survey. Child Abuse and Neglect, 63, 172–182. https://doi.org/10.1016/j.chiabu.2016.11.029
  46. Wiersma, L. D., & Sherman, C. P. (2005). Volunteer youth sport coaches’ perspectives of coaching education/certification and parental codes of conduct. Research quarterly for exercise and sport76(3), 324-338. https://doi.org/10.1080/02701367.2005.10599303
  47. Willson, E., Kerr, G., Battaglia, A., & Stirling, A. (2022). Listening to athletes’ voices: national team athletes’ perspectives on advancing Safe Sport in Canada. Frontiers in Sports and Active Living4, 840221. https://doi.org/10.3389/fspor.2022.840221
  48. Willson, E., Kerr, G., Stirling, A., & Buono, S. (2022). Prevalence of Maltreatment Among Canadian National Team Athletes. Journal of Interpersonal Violence37(21–22), 1-23. https://doi.org/10.1177/08862605211045096
  49. Wilson, A. L., & Rhind, D. J. (2022). Tracking progress towards the International safeguards for children in sport. Social Sciences11(8), 322. https://doi.org/10.3390/socsci11080322
2024-06-20T12:01:59-05:00June 21st, 2024|General, Research, Sport Education, Sports Coaching, Sports Exercise Science|Comments Off on Coaches’ Perspectives of the Influence of Safe Sport-Related Education

Advice on making the most of basketball three-point shot data

Authors: George Terhanian1


Corresponding Author:

George Terhanian, PhD
200 Hoover Avenue, #2101
Las Vegas NV, 89101
george.terhanian@gmail.com
646-430-3420

1George Terhanian founded Electric Insights after holding executive positions at The NPD Group, Toluna, and Harris Interactive. He has also served on boards or advisory groups for several organizations, including the US National Academy of Sciences, the Advertising Research Foundation, and the British Polling Society. He is known for conceiving how to make survey data, including pre-election forecasts, more accurate through statistical matching methods.

Making the most of basketball three-point shot data

ABSTRACT

This study’s primary goal is to help National Basketball Association (NBA) and other basketball teams worldwide increase their three-point shooting accuracy and decrease their opponents’, a key to winning more games.  A related goal is to explain how a combination of good data, logistic regression analysis, likely effects reporting in probabilities or percentage points, and self-serve simulation can improve communication among data analysts, basketball coaches, and players, and enhance each group’s effectiveness.  Logistic regression analysis of 32,511 NBA three-point shots shows six factors affect the three-point shooting percentage: closest defender’s distance to the shooter, time left on the 24-second shot clock, whether the player shot after dribbling or catching the ball, game period, shot distance, and venue.  In the past, data analysts conveyed the results of such analyses to coaches and players using terms such as regression, logits, and odds.  Some NBA executives say doing so again would be disastrous.  An alternative is to emphasize probabilities and percentages in communication and create self-serve simulators coaches and players can use to predict how changes in critical factors affect three-point shooting percentages.  NBA and other teams worldwide can apply this approach to new and existing datasets they maintain, enhance, and build.

Key Words: self-serve simulation, predicted probabilities, logistic regression, likely effects reporting, psychotherapy

INTRODUCTION

The National Basketball Association (NBA) releases specific three-point shot characteristics, such as shooter name and shot distance.  Aside from the 2014-15 season’s first 903 of 1,230 games (and 2015-16’s first 631, though the latter data are no longer publicly available), the released data exclude a variety of individual shot characteristics such as the closest defender’s distance to the shooter, a crucial defensive effectiveness measure (14).  Teams are said to consider the excluded characteristics proprietary.  As Mike Zarren, assistant general manager and chief legal counsel for the NBA’s Boston Celtics, explained, “You can’t share stuff with other teams…We are not at an equilibrium point where all the teams know what everyone else is doing.  There are some advantages that some teams have over others” (15) (51:47). 

The analyses here use the 2014-15 shot dataset, the last and largest single-season one containing full shot data that is publicly available.  The main goal is to help NBA and other basketball teams worldwide increase their three-point shooting accuracy and decrease their opponents’.  Teams that do so should win more games.  A related goal is to explain how a combination of good data, logistic regression analysis, likely effects reporting in probabilities or percentage points (e.g., “Shooting off the catch rather than the dribble is associated with a two-percentage-point increase in our three-point shot make percentage.”), and self-serve simulation can improve communication among data analysts, basketball coaches, and players, and enhance each group’s effectiveness.  NBA and other teams worldwide can apply this approach to new and existing datasets they maintain, enhance, and build.  Aspects of the approach are also portable to many other issues and areas where the key outcome variable is binary (26).

This paper has seven additional sections (excluding references and other ancillary information).  The first summarizes basic rules and strategies for NBA basketball, highlighting the importance of the three-point shot.  It also explains why data analysts seeking to communicate effectively with coaches and players should consider using non-technical language.  The second section describes the three-point shot data used in this paper’s analyses.  It then provides the rationale for relying on logistic regression analysis for model building and prediction.  The third section reports the results of the analyses and suggests how data analysts might share them with coaches and players.  It also explores why academic researchers tend not to report likely effects in probabilities or percentage points.  The fourth details how data analysts can build self-serve simulators that report likely effects in probabilities or percentage points.  The limitations of this paper’s analyses are discussed in the fifth section.  The next-to-last section describes how teams might apply the approach described here, while the final section provides concluding remarks.

NBA Basketball: Basic Rules and Strategies

NBA games have two teams with five players competing for four 12-minute periods (excluding possible five-minute overtime periods).  To score, a team needs to shoot the ball through the basket.  With the clock running, a successful shot is worth three or two points, depending on the shooter’s distance from the basket.  The clock stops for free throws, which are uncontested 15-foot shots worth a single point awarded for specific infringements.  One can calculate each shot’s expected value (EV) by multiplying its potential value by its average make percentage.  For the 2022-23 regular season, the expected value of a three- and two-point shot was almost identical: 1.08 points (3*.36) for a three-pointer and 1.10 (2*.55) for a two-pointer.  Each free throw’s expected value was .78 points (1*.78) or 1.56 for a more typical pair (3).  A recent example shows why the expected value measure can be strategically important.

In the second round of the 2020-21 playoffs, the Atlanta Hawks shocked the heavily favored Philadelphia 76ers, coming from behind to win the seven-game series four to three.  The Hawks’ decision to foul Ben Simmons repeatedly to force him to shoot free throws contributed to the victory.  As Hall-of-Fame player Earvin “Magic” Johnson observed, “…it fueled the Hawks’ comeback” (13).

Simmons shot just 33% (15 for 45) from the free-throw line for the series, far below his 61% (and the league’s 77%) regular season average.  Simmons’s 33% figure suggests the Hawks expected him to score only .66 points for two free throws in a series in which his team made 40% of its three-pointers (for an expected value of 1.22 points) and 52% of its two-pointers (for a 1.05 expected value).  That means the Hawks expected to gain .56 points (1.22 – .66) for a replaced three-point shot and .39 points (1.05 – .66) for a replaced two-pointer with the foul Simmons strategy.  Perhaps more notably, it may have affected Simmons’s decision-making.  To his team’s detriment, Simmons chose not to attempt an open lay-up or dunk with 3:30 remaining in game seven (4), arguably for fear of getting fouled and having to shoot free throws (21, 27).

Overstating three-point shooting’s significance is difficult.  In 2022-23, the Toronto Raptors, Charlotte Hornets, and Houston Rockets won 41, 27, and 21 (of 82) regular season games, too few to qualify for the post-season playoffs; their three-point shooting percentages of 34%, 33%, and 33% were the league’s worst.  The Philadelphia 76ers, Golden State Warriors, and Los Angeles Clippers won 54, 44, and 44 games, enough to compete in the playoffs; they were top performers in three-point shooting at 39%, 39%, and 38%.  These data and separate multi-season analyses (18, 20) suggest that winning in the NBA hinges heavily on making (and defending) three-point shots. 

Clear Communication 

An excellent statistical model is “a simplified version of reality, like a street map that shows you how to travel from one part of a city to another” (28) (p. ix).  But that map will not help you find your way if it includes esoteric terms or unfamiliar signs or symbols.  Likewise, if data analysts use uncommon language when giving advice, coaches and players may feel lost.  Mike Zarren would agree.  If Celtics’ data analysts were to apply logistic regression to three-point shot data, he would tell them to communicate what they learn “without using the word regression because that’s a disaster” (15) (11:18).  Terms like logits, standard deviations, odds, odds ratios, and z scores also would be off-limits.  Zarren does not believe coaches and players are unintelligent.  Even good data analysts can find aspects of logistic regression challenging.  That is why DeMaris (7) (p. 1,057) observed, “…there is still considerable confusion about the interpretation of logistic regression results.”  And why Gelman and Hill (11) (p. 83) commented, “…the concept of odds can be difficult to understand, and odds ratios are even more obscure.”

Washington Wizards’ assistant coach Dean Oliver’s views on clear communication resemble Zarren’s.  “When I directed quantitative analysis for the Denver Nuggets and would prepare stuff for coaches,” he said, “there were actually very few numbers in there.  It was usually words because it was easier for them to absorb…” (15) (48:54). 

An alternative to avoiding numbers is to report key predictor variables’ likely effects with familiar ones like probabilities and percentages—the NBA reports various descriptive statistics and cross-tabulations on its website, emphasizing percentages, hence coaches’ and players’ familiarity. 

Methods

Data

The NBA has used technology to gather detailed player performance data since the 2013-14 season via SportVU, then Second Spectrum.  The analyses here use SportVU data, described as “real-time and innovative statistics based on speed, distance, player separation, and ball possession for comprehensive analysis of players and teams” (25).  How did the SportVU system work?  In each arena’s rafters, six cameras recorded information throughout each game in .04-second intervals, producing 25 images per second.  A computer algorithm then plotted the locations of the ball, basket, and 10 players.  SportVU delivered data and reports to each team and the league as a last step.

As noted earlier, the NBA made available SportVU raw, shot-level data—including the defender distance variable—for three-quarters of the 2014-15 regular season.  (The NBA also made available raw, shot-level data early in the 2015-16 season before discontinuing the practice entirely in January 2016.  The latter dataset is no longer publicly available.)  The 2014-15 dataset (17)—the last and largest single-season one publicly available—contains 21 variables and 128,069 three- and two-point shots, as described in the Appendix.  After making minor changes (e.g., removing two-point shots), the remaining three-point shots totaled 32,511—11,426 makes and 21,085 misses—taken from October 28, 2014, through March 4, 2015.

Analysis Method 

Logistic regression models the relationship between a binary outcome (e.g., made or missed three-point shots, or nearly anything with a yes or no interpretation) and, typically, several predictor or explanatory variables.  It is ideal for identifying and estimating the effects of actions to increase or decrease the size or proportion of the group of interest, specifically, made three-point shots.  It can also predict each three-point shot’s probability of belonging to the “made” rather than the “missed” group.  Many academic researchers consider it “the standard way to model binary outcomes” (11) (p. 79), “dominating all other methods in both the social and biomedical sciences” (2) (para. 1).

RESULTS
The final logistic regression model comprises one dependent and six predictor variables.  The predictor variables were selected based on their relationship with the dependent variable, one another, theory, availability, and their effect on the model’s predictive accuracy.  Below are descriptions of the seven variables and brief explanations for how they may differ from the original ones described in the Appendix.

  1. ShotResult: The dependent variable: whether the shooter made the shot. (Values: 0=Missed, 1=Made; Original variable: Fgm)
  2. DefDist: The closest defender’s distance to the shooter in feet (ft.). Basketball players and coaches recommended a four-category variable after discussions and preliminary analyses. (Values: 1=0-3 ft., 2=3-6 ft., 3=6-9 ft., 4=9+ ft.; Original variable: Close_Def_Dist)
  3. ShotClock: The number of seconds (secs.) on the 24-second shot clock. Analyses showed steep drops in the make probability at the 4- and 2-second marks, thus the decision to create a variable with three categories. (Values: 1=0-2 secs., 2=2-4 secs., 3=4+ secs; Original variable: Shot_Clock)
  4. Catch: Whether the shooter took the shot off the catch or dribble. The original variable reported the number of dribbles the shooter took before shooting. Basketball players and coaches recommended a two-category variable after discussions and preliminary analyses. (Values: 1=Off Catch, 2=Off Dribble; Original variable: Dribbles)
  5. Period: The game period when the shot was taken, with fourth period and overtime shots pooled because of their similar make percentages. (Values: 1=1, 2=2, 3=3, 4=4+; Original variable: Period)
  6. ShotDist: The distance in feet from the center of the basket to the shooter. Basketball players and coaches recommended a four-category variable after discussions and preliminary analyses. (Values: 1=22-24 ft., 2=24-25 ft., 3=25-26 ft., 4=26+ ft.; Original variable: Shot_Dist)
  7. Venue: Whether it was a home or away game for the shooter’s team. (Values: 0=Away, 1=Home; Original variable: Location)

Table 1 reports the logistic regression analysis results, notably, standard information such as logit coefficients, odds, z scores, and a measure of statistical significance (i.e., p>z).  It also reports useful non-standard information such as frequencies, (predicted) probabilities, and expected values.  The rationale for reporting standard and non-standard information, to borrow from the statistician Frederick Mosteller, is to “let weaknesses from one…be buttressed by strength from another” (16) (Ch. 4, p. 116), a concept he referred to as “balancing biases.”  As envisioned, data analysts can rely on standard information when building and evaluating logistic regression models, and non-standard when communicating the results and their implications to coaches and players.

Table 1.

Results of final logistic regression analysis

VariableFrequencyLogitOddszp>zProbEV
DefDist       
0-3 ft.6%1.290.86
3-6 ft.54%0.251.294.740.00.341.02
6-9 ft.28%0.381.466.780.00.371.11
9+ ft.12%0.471.607.740.00.391.17
ShotClock       
0-2 secs.5%1.210.62
2-4 secs.7%0.631.888.020.00.330.99
4+ secs.88%0.772.1711.870.00.361.08
Catch       
Off catch75%1.361.07
Off dribble25%-0.09.0.91-3.210.00.341.01
Period       
124%1.371.11
224%-0.110.89-3.340.00.341.03
325%-0.050.96-1.340.18.361.08
4+27%-0.150.86-4.540.00.341.01
ShotDist       
22-24 ft31%1.381.13
24-25 ft.36%-0.090.91-3.250.01.361.06
25-26 ft.20%-0.170.84-5.120.00.341.01
26+ ft.13%-0.300.74-7.130.00.310.92
Venue       
Away50%1.351.04
Home50%0.051.052.140.03.361.07
…Constant-1.460.23-17.420.00.190.56

Note. n=32,511.  Log pseudolikelihood, starting value: -21,078.18; final value: -20,827.69.  Likelihood ratio (degrees of freedom=13): 498.44, p > chi2 = 0.00. Tjur R2: 0.014; McFadden R2: 0.012.  Stukel chi2(1) = 4.10, p > chi2 = 0.043

Standard versus Non-Standard Interpretations

Table 1 shows that the defender distance variable (DefDist) affects the outcome variable.  A standard interpretation would emphasize odds ratios and statistical significance:

Controlling for other variables’ effects, three-point shots taken with the closest defender 9+ feet away have a:

  • 60% higher odds (i.e., 1.6/1) of going in than those taken with the closest defender 0-3 feet away,
  • 24% higher odds (i.e., 1.6/1.29) than those with the defender 3-6 feet away, and
  • 10% higher odds (i.e., 1.6/1.46) than those with the defender 6-9 feet away.

Each effect is statistically significant, as their z scores show.

Although the standard interpretation is correct from a technical standpoint, coaches and players may not understand or act on it, given Zarren’s and Oliver’s comments (as well as those of DeMaris, Gelman, and Hill).  Now consider a non-standard interpretation (that relies on Table 1’s non-standard information).  Note that each percentage’s associated expected value is in parentheses.

All else unchanged, the percentage of three-point makes would decrease from 35% (1.05 pts.) to:

  • 29% (0.86 pts.) with the defender always 0-3 feet away from the shooter, and
  • 34% (1.02 pts.) with the defender always 3-6 feet away.

It would increase from 35% to:

  • 37% (1.11 pts.) with the defender always 6-9 feet away, and
  • 39% (1.17 pts.) with the defender always 9+ feet away.

NBA coaches and players would probably prefer the non-standard interpretation.  Arguably, reporting the likely effect in percentage points instead of odds is more intuitive and actionable (26, 30). 

Calculating Each Shot’s Make Probability

Another number to note in Table 1 is the constant of -1.46 logits which translates to a predicted make probability of 19% (0.56 pts.).  The -1.46 number represents a three-point shot with the lowest value on each predictor variable:

  • Defender 0-3 feet away
  • 0-2 seconds on the shot clock
  • Off the catch
  • First period
  • Shot distance of 22-24 feet
  • Away game

An implication is that it is possible to calculate the predicted make probability of each of the 32,511 shots.  Such information can spark curiosity and foster improved performance for a player scrutinizing his own (or opponents’) shot data.  For example, Row 1 of Table 2 reports the logit coefficients associated with the first three-point shot Klay Thompson of the Golden State Warriors attempted in 2014-15.  In the third period of an away game versus the Sacramento Kings with 4.6 seconds on the shot clock, Thompson missed from 22 feet off the catch with the defender 3.9 feet away.  As the column titled Prob shows, that shot’s predicted make probability was 38% (.38*100), calculated by applying the following formula to select Table 2 numbers: exp (sum of logit coefficients + constant)/ (exp (sum of logit coefficients + constant) +1).

Upon closer examination, Thompson could have asked the team’s data analysts how that shot’s make probability would have changed had the defender been 9+ rather than 3.9 feet away.  To respond, an analyst could have replaced the DefDist logit coefficient of 0.25 with 0.47, the one corresponding to a 9+ feet value.  As shown in Row 2, the make probability would have risen to 42%, a four-percentage-point increase or likely effect. 

Thompson next might have asked how shooting off the dribble rather than the catch would have affected the 42% probability.  After replacing the Catch logit coefficient of 0 with-0.09, an analyst could have reported that the probability would have dropped to 39%, as Row 3 of the Prob column shows. 

Thompson, an excellent shooter, would probably work to improve specific aspects of his shooting if he had such data for all his three-point shots (31).

Table 2.

Simulating the effect of changes on a single shot’s make probability 

Row DefDist ShotClock Catch Period ShotDist Venue Cost Total Prob 
0.25 0.77 -0.05 -1.46 -0.49 0.38 
0.47 0.77 -0.05 -1.46 -0.27 0.42 
0.47 0.77 -0.09 -0.05 -1.46 -0.36 0.39 

Predicting the Likely Effect of Multiple Changes to Multiple Predictor Variables

Coaches thinking more broadly might focus on all 32,511 shots and ask analysts to predict the likely effect of multiple changes to the values of multiple predictor variables. Building on the Thompson example, analysts could approach the task by conceptualizing changes as scenarios.  Below, and graphically in Figure 1, are three illustrative ones.

Scenario 1. Players take all 32,511 three-point shots with the defender 9+ ft. away.  

Prediction: 39% of all three-pointers will go in, an increase of four percentage points compared to the 35% baseline, translating to 1,297 more makes and 12,723 total ones.

Scenario 2. Players take all 32,511 three-point shots:

  • with the defender 9+ feet away 
  • from 22-24 ft. away from the basket

Prediction: 42% of all shots will go in, a three-percentage-point gain vs. Scenario 1.  This translates to 808 more makes and 13,531 total makes.

Scenario 3. Players take all 32,511 three-point shots:

  • with the defender 9+ ft. away 
  • from 22-24 ft. away from the basket
  • with 4+ seconds on the 24-second shot clock

Prediction: 43% of all shots will go in, an increase of another percentage point compared to Scenario 2, translating to 370 more makes and 13,901 total ones.

Figure 1.

Percentage of predicted makes by scenario 

Each scenario’s likely effect results from all-or-nothing simulation.  How does it work?  For any predictor variable, such as Catch, data analysts select one target value—either “Off Catch” (occurring 75% of the time) or “Off Dribble” (25%).  Assume they choose “Off Catch,” with a logit coefficient of 0, as Table 1 shows.  For the 8,127 “Off Dribble” shots, they would replace the coefficient of -0.09, also shown in Table 1, with 0 and calculate the new likely effect: 158 more made three-pointers for the season, translating to 11,584 total makes. 

Adopting a fine-tuning approach is another possibility.  After examining the frequency distribution of the Catch values, analysts could specify a new distribution, such as 92% “Off Catch” and 8% “Off Dribble,” ensuring the total sums to 100%.  They would keep the original 24,384 “Off Catch” values (i.e., 75%) and change the -0.09 coefficient to 0 for another 2,600 selected randomly from the original 8,127 “Off Dribble” values to achieve the 92:8 ratio.  The change would result in 11,530 made three-pointers, 54 less (i.e., 11,584-11,530) than if players had taken all shots off the catch.

If coaches and players embrace simulation, there could be too many scenarios for data analysts to handle.  To stay ahead of demand, they could build self-serve simulators tailored explicitly for coaches’ and players’ use.  Finding prototypes in academic research will be a struggle, however, arguably because of the non-linear relationship between logits and probabilities (26, 30) and its dampening effect on reporting likely effects in probabilities or percentage points.  Figure 2 plots illustrative logit and probability values to cast light on that relationship.

Figure 2.

The non-linear relationship between logits (x-axis) and probabilities (y-axis) 

Note how a one-logit increase from zero to one on the x-axis corresponds to a .23 probability increase (from .5 to .73) on the y-axis.  Yet a one-logit increase from four to five (or minus 5 to minus 4) translates only to a tiny probability increase.  As shown in Table 1 (and later in Table 3), it is still possible to report the effect of a predictor variable, x, on a binary outcome, y, in probabilities or percentage points (e.g., a one-unit change in x is associated with a three-percentage-point increase in y, all else being equal).  Arguably, it is also sensible to do so, not least because NBA players make roughly 35% of their three-point shots and the relationship between logits and probabilities is reasonably linear between .2 and .8 on the probability scale, as Figure 2 shows.  But in more extreme cases, as Figure 2 suggests, the effect size will depend heavily on the value of y and the values of the model’s other predictor variables.  More precisely, the size of the effect will decrease near 0 and 1.  As a result, x’s effect on y in probabilities percentage points “…cannot be fully represented by a single number” (19) (p. 23).  That may be why some logistic regression experts (6-8) have advised against using probabilities or percentage points to report and interpret logistic regression coefficients’ overall effects.  It also may be why most major statistical software packages do not produce effects in probabilities or percentage points through pre-packaged procedures or built-in modules.  As an unintended consequence, some data analysts seeking guidance likely have had to fend for themselves.           

A GUIDE TO BUILDING SELF-SERVE SIMULATORS
Data analysts can use this guide to build simulators that report likely effects in probabilities or percentage points.  (For convenience, references are made to the three-point shot data used in this paper’s analyses, although the guide is general and should work across areas of interest.)  Several steps are involved in the process:

Step 1. Ensure sufficient three-point shot data are available to conduct logistic regression analysis, which should be a straightforward task for NBA teams given the league’s business relationship with Second Spectrum (which replaced SportVU).  How does one define sufficient?  As a rule of thumb, at least 10 shot attempts are needed for each predictor variable in logistic regression model, adjusting for the expected shot make rate (or miss rate if it is lower than the make rate).  For context, this paper’s main analysis with six predictor variables and a 35% expected make rate required a minimum of 171 three-point shot attempts: 10 * (6 /.35).  For non-NBA teams requiring raw data, assistant coaches can record key shot characteristics with paper and pencil or specialized hand-held apps. 

Step 2. Develop a model to predict successful 3-point shots, the binary outcome of interest.  Logistic regression produces a weight—a logit coefficient—for each category of each predictor variable.  In an optimal model, those weights maximize the predicted probability gap between the mutually exclusive outcomes (1).  

Step 3. To calculate a single 2014-15 three-point shot’s make probability, sum the weights corresponding to its characteristics and add the constant.  After that, apply the formula shown earlier to the result: exp (sum of logit coefficients + constant)/ (exp (sum of logit coefficients + constant) +1).  Alternatively, request the predicted probability from the statistical software.

Step 4. Do the same for the 32,510 remaining shots, sum all 32,511 probabilities, then take the average to compute the overall make probability.  If the model predicts players will make 35% of all three-point shots, it translates to 11,426 makes (.35*32,511).   

Step 5. To enable the simulator to work online or in a mobile app, develop an algorithm using JavaScript.  The simulator’s purpose is to let users see how changes they make to the values of the predictor variables affect the .35 probability.  

Step 6. Design a user interface, possibly by enlisting the support of someone familiar with website and app development.

Step 7. Keep things simple initially—permit users to change only one value of one predictor variable.  If it has two response choices like Away and Home, let the user change every Away response to Home or vice versa.  Think of this as the all-or-nothing option.  

Step 8. For all 32,511 three-point shots, change the corresponding Away or Home logit coefficient (but no others) to align with the user’s selection, then recalculate the predicted make probability.  The likely effect is the difference between the new and starting probability (and the new and starting makes).   

Step 9. Follow the same process to let users change the values of several predictor variables simultaneously. 

Step 10. Go further and allow users to change any predictor variable’s frequency distribution as they please, ensuring the distribution sums to 100%.  Think of this as the fine-tuning option.  The algorithm will need rules to accommodate the changes.  

What would all-or-nothing and fine-tuning self-serve simulators look like, and how would they function?  Figure 3 shows a screenshot of a working all-or-nothing simulator (accessible at https://www.electricinsights.com/hoops1).  The first column contains the predictor variables and their values.  Column 2 shows the changes (in blue) the user made to the 2014-15 frequencies; the third column displays the original frequencies.

Figure 3

All-or-nothing simulation 

As Figure 3 shows, the user selected values of “0-3 ft.” for “Defender Distance,” “0-2 secs.” for “Time Left on Shot Clock,” “Dribble” for “Off Catch or Dribble?” and “26+ ft.” for “Shot Distance.”  The likely effect is a 22-point decrease in the make probability, translating to 7,229 fewer makes and 4,197 total ones.

Personalized simulators for players like Klay Thompson and Stephen Curry could be more beneficial (and accurate) than a generic, all-player one.  To support this point, Table 3 reports the results of a new analysis of Curry’s 2014-15 three-point shots.  Note how the values of many key measures, such as frequencies and expected values, differ substantially from their Table 1 counterparts.  Table 3 shows, for instance, that Curry took 54% of his three-pointers off the dribble with an expected value of 1.32 points per shot.  But Table 1 showed NBA players (including Curry) took only 25% of their three-pointers off the dribble with a 1.01 points-per-shot expected value.  Curry is not your average three-point shooter, hence the need for personalization.  

Table 3.

Results of Steph Curry logistic regression analysis 

VariableFrequencyLogitOddszp>zProbEV
DefDist       
0-3 ft.11%1.240.72
3-6 ft.55%0.892.442.440.02.431.29
6-9 ft.24%0.972.652.480.01.451.35
9+ ft.10%1.263.512.750.00.521.55
ShotClock       
0-2 secs.2%1.250.75
2-4 secs.3%2.108.172.190.03.722.15
4+ secs.95%0.792.211.100.27.421.25
Catch       
Off catch46%1 .401.21
Off dribble54%0.151.17.750.46..441.32
Period       
133%1.441.30
219%0.011.010.050.963.441.31
329%-0.030.97-0.120.902.431.28
4+19%-0.260.77-0.910.364.371.12
ShotDist       
22-24 ft16%1.551.65
24-25 ft.31%-0.750.47-2.460.01.371.11
25-26 ft.24%-0.510.60-1.580.11.431.28
26+ ft.28%-0.650.52-2.040.04.401.12
Venue       
Away54%1.411.23
Home46%0.111.12.560.58.441.31
…Constant-1.530.22-1.80.07.190.56

Note.  n=j.  Log pseudolikelihood, starting value: -305.04; final value: -294.46.  Likelihood ratio (degrees of freedom=13): 21.16, p > chi2 = 0.07. Tjur R2: 0.047; McFadden R2: 0.035.  Stukel chi2(1) = 4.38, p > chi2 = 0.11.

A working fine-tuning simulator—a complement to the Curry analysis—is available at https://www.electricinsights.com/curry1.  It lets users change any value of any predictor variable by any amount and see the likely effect.  In the screenshot shown in Figure 4, the user changed Curry’s 2014-15 season frequencies (in parentheses) for “Defender Distance,” “Off Catch or Dribble?” and “Shot Distance.”  The likely effect is a seven-percentage-point increase to his 42% average make probability, translating to 31 more makes (i.e., 220-189).

Figure 4 

Steph Curry’s fine-tuning simulator 

Discussion

If the sample size of three-point shots allows, data analysts can build all-or-nothing and fine-tuning simulators that include all teams and players, each team, and each player.  Given sufficient demand, they can also do so with data for other major shot types (i.e., two-pointers and free throws).    

Several caveats are in order before describing how basketball teams might act on the results the approach described here, using the results (and simulators) shown earlier for illustration.  First, inferences drawn from the 2014-15 dataset may no longer apply because of the time gap.  Nor did this dataset include several three-point shot characteristics (e.g., closest defender’s height and reach, the game score at each shot) that could be important, which is a second caveat. 

A third caveat concerns the “all else the same” assumption, a logistic regression analysis theoretical staple.  In practice, it may not hold up.  Giving excellent three-point shooters more playing time, for example, could worsen teams defensively.  Deciding who plays and why, a type of optimization, lies outside this paper’s scope.

Another caveat involves ease of implementation.  Building and updating simulators like Curry’s for NBA players who shoot, say, 175 or more three-point shots per season may require automation.  To characterize the task as trivial would be misleading.

Humility and ignorance are two key factors to consider as the fifth caveat.  Some NBA data analysts may have already adopted an approach combining good data, logistic regression, likely effects reporting in probabilities or percentage points, and self-serve simulation.  As noted earlier, they work mainly in secrecy.  And when they make comments at analytics conferences or similar forums, some are instructed “to go up on stage and talk about something without saying anything” (15) (51:37), according to Zarren.

Application In Sports

Good basketball coaches position their players to make the highest percentage of three-pointers possible, all else equal.  They also implement a defense to minimize opponents’ three-point make percentage.  The analyses presented here suggest six factors affect the make percentage:

  • Closest defender’s distance to the shooter
  • Time left on the 24-second shot clock
  • Whether the player shot off the dribble or catch
  • Game period
  • Shot distance
  • Venue

How might coaches act on these findings?  There are numerous possibilities, starting with game pace.  Fast ball movement from defense to offense (e.g., before the defense sets) gives the offensive team more time to find an open three-point shot, preferably before the four-second mark on the shot clock where shooting percentages dip, and unquestionably before the two-second mark where they plummet.  As the NBA’s all-time leading three-point shooter, Steph Curry understands this well.  Table 3 showed he attempted only two percent (compared to a five percent NBA average) of his three-point shots with less than two seconds on the shot clock.

Coaches should design offensive plays and patterns to create at least three feet of space between the shooter and defender.  A 22-24-foot shot’s make probability with the defender 0-3 feet away is only 29%, all else equal.  It increases to 34% with the defender 3-6 feet away.  Space is critical for Curry, too.  He shot 11% of his three-pointers with the defender 0-3 feet away versus the NBA average of 6%, reducing his overall make percentage.  It could have been worse.  Had he taken all 448 of his shots with the defender 0-3 feet away, all other factors being equal, his make probability would have dropped from 42% to 24%.

Making sure players understand the characteristics of a desirable three-point shot is another opportunity.  Personalized simulators like Curry’s can make each player’s shooting strengths and weaknesses obvious.  For instance, some players may make a higher percentage of three-pointers off the dribble than catch.  Others may suffer only a slight percentage point decline when guarded tightly or shooting from 26+ rather than 22-24 feet.  And if those simulators contain opponents’ shot data, coaches could use them to determine how to exploit specific opponents’ weaknesses.

Analyses show the three-point make percentage drops in the fourth period.  Player fitness could be a contributing factor.  Without applicable data (e.g., feet, meters, or miles logged since tip-off), it is difficult or impossible to test the hypothesis.  Maybe the players on the court lack the skills needed to shoot higher percentages.  Or game stress could affect shooting performance—data on the game score at each shot would clarify the matter.  For context, the all-or-nothing simulator would show that the highest probability three-point shot (46%) has these characteristics:

  • Defender 9+ feet away
  • 4+ seconds on the shot clock
  • Off the catch
  • First period
  • 22-24 feet from the basket
  • At home 

The simulator would also show that the 46% make probability drops to 42% in the fourth period, changing nothing else.  That means players have grown tired, different players are on the court, game pressure has taken its toll, or unknown variables caused the drop.  So how should head coaches make sense of this?  Working with assistant coaches and data analysts, they can explore ways to increase players’ fitness levels, optimize substitution patterns, and help players cope better with pressure.  If teams can access variables that were unavailable for analysis here, their analysts can include them in new models to estimate their likely effect.

Players make a higher percentage of three-point shots at home than on the road, all else equal.  Crowd noise, characteristics (e.g., lighting) of the less familiar setting, travel effects (e.g., uncomfortable hotel beds), or some combination of these may explain why.  Coaches can look outside the league for ideas to help players overcome such obstacles.  For instance, former US Navy SEAL commander Mark Divine prepares SEAL candidates for training by replicating the challenges they are likely to encounter, including Hell Week during which “each candidate sleeps only about four total hours but runs more than 200 miles and does physical training for more than 20 hours per day” (5). 

Contrary to conventional wisdom, Divine’s SEALFIT program places particular emphasis on skills like positive visualization, breath control, and meditation because, as he said, “People who haven’t learned to control their mind and emotions quit or they get hurt” (10).  Does SEALFIT work?  Divine reports that nine of 10 SEAL candidates who complete SEALFIT training become SEALs (versus a 20% norm).  He is confident that NBA players would benefit from the program (M. Divine, personal communication, March 11, 2022).

A complementary tool for improving performance is psychotherapy.  As described earlier, Ben Simmons’s decision to avoid attempting an open lay-up or dunk (arguably) for fear of being fouled and having to shoot free throws may have cost his team the 76ers a 2021 playoff series to the Hawks.  As his teammate Joel Embiid declared, “That was the turning point” (12) (1:08).  Psychotherapist Richard Schwartz, who developed the Internal Family Systems (IFS) therapeutic model (23), would probably concur then speculate that Simmons’s widely criticized decision (21, 27) originated from past trauma linked to his poor free-throw shooting.  After citing evidence (24) of IFS’s effectiveness, Schwartz might posit that a protective part of Simmons’s mind—a “guardian of [his] inner world” (23) (p. 184)—compelled him to pass rather than shoot to prevent a traumatized part—think of it as a deeply wounded child—from re-experiencing pain or shame at the free throw line.  Were Schwartz to work with Simmons, he would likely try to communicate with his mind’s traumatized part as if it were an actual person, restore its faith in Simmons’s free-throw shooting abilities, and encourage the protective part to undertake different tasks.  The more traditional coaching approach of advising, or even requiring, Simmons to practice harder with expert guidance did not—and may never—work.  As Early (9) observed, “Simmons has been reluctant to seek help from top shooting coaches…He reportedly clashed with his former team (the 76ers) years ago over who he would work with, preferring to practice with his brother rather than team shooting coach John Townsend.” 

Coaches can use the same strategies to reduce their opponent’s three-point shooting percentage they use to improve their own.  Table 1 data (and the all-or-nothing simulator) suggest the key lies in forcing opponents to shoot with less than four seconds on the clock, off the dribble, from long distances while being closely guarded.  Stepping up the defensive intensity in the first and third periods where the likelihood of making a three-point shot is relatively high, and motivating the home crowd to unsettle opponents makes sense, too.

Coaches can also think about implementing a full- or three-quarter court press more often, maybe for entire games.  The goals of a 2-2-1 three-quarter court press, for example, are control and containment, not turnover generation.  As envisioned, its use would slow down the game and force opponents to shoot a higher percentage of difficult three-pointers with less time on the clock, reducing their make percentage.  As Hall-of-Fame coach Jack Ramsay explained in Pressure Basketball, “The tempo of the game is controlled by the defensive team and the best manner of control is through the exertion of pressure at some point on the court” (22) (p. 80).

Good data, logistic regression analysis, and self-serve simulation can also promote truth and trust, positive attributes for any coach or leader.  Maybe tongue in cheek, former NBA coach Jeff Van Gundy (15) (17:40) confessed to lying to his players. “If I saw what I wanted to change,” he said, “I would either use numbers to support it or make them up because the players are not going to know the difference.”  Giving players tools that predict the likely effects of their potential actions would be more truthful and potentially more effective, too. 

Conclusions

Keeping things simple is critical in basketball.  According to Zarren (15) (7:00), “There are 20 things in (the coach’s) head that will get us X number of wins per season, but you can only focus on six of them in practice, and the players might only remember four and actually execute one in a game.  So you’ve got to pick your battles if you’re a stats guy who…needs to talk to a coach.  But if you’re a coach, you need to pick your battles, too.”

Van Gundy (15) (16:51) offered data analysts and coaches strong advice related to this point from his coaching experience.  “I wouldn’t tell a guy you’re 38% on three to four dribbles so dribble a fifth time because you go up to 40%,” he said.  “You better be pretty sure about what you’re saying…You want players to feel confident.  You don’t want them out there saying, ‘Was that [four] dribbles or [five] when I pull up?’” 

To mitigate the risk of generating harmful insights, data analysts should actively engage coaches and players in making key analytical decisions (e.g., ensuring predictor variables and their levels are meaningful), not least because Van Gundy and others who share his philosophy consider basketball sense—the capacity to make wise choices that benefit the team—to be of paramount importance.  

Arguably, self-serve simulation with likely effects reporting in probabilities or percentage points is steeped in such basketball sense.  As a benefit, data analysts will not need to rely on technical terms (e.g., “he shoots two standard deviations below the league average when you force him to the left” (15) (48:20)), as former Memphis Grizzlies’ executive John Hollinger once did.  Instead, they can speak with more authority using plain language (e.g., “his make probability drops to 28% when you force him to the left”).  Or they can make self-serve simulators available to players (and coaches) and let them figure it out on their own.  They may appreciate it, even cynics sharing Hall-of-Fame player Charles Barkley’s views: “Analytics don’t work at all.  It’s just the crap that some people who are really smart made up to try to get in the game because they had no talent” (29) (2:05).

NBA and other basketball teams worldwide should consider adopting an approach that combines good data, logistic regression analysis, likely effects reporting in probabilities or percentage points, and self-serve simulation.  The possible benefits are myriad.  It can help teams increase their three-point shooting percentages while lowering their opponents’; improve communication among data analysts, coaches, and players; enhance each group’s effectiveness; and lead to more wins. 

Appendix

Variables in the 2014-15 NBA shot dataset

  1. Game_Id: The game’s unique identifier.
  2. Matchup: The teams competing.
  3. Location: Whether it was a home or away game for the shooter’s team.
  4. Outcome: Whether the shooter’s team won or lost.
  5. Final_Margin: By how many points the shooter’s team won or lost.
  6. Shot_Number: The shooter’s nth shot that game.
  7. Period: The period in which the shooter took the shot.
  8. Game_Clock: Minutes and seconds left in the period in which the shooter took the shot.
  9. Shot_Clock: Seconds remaining on the 24-second shot clock when the shooter took the shot.
  10. Dribbles: Number of dribbles the shooter took before shooting.
  11. Touch_Time: Number of seconds the shooter had the ball before shooting.
  12. Shot_Dist: Distance in feet from the center of the basket to the shooter.
  13. Pts_Type: Whether the shooter attempted a two- or three-point shot.
  14. Shot_Result: Whether the shooter made the shot.
  15. Closest Defender: Name of the defender closest to the shooter.
  16. Closest_Defender_Player_Id: The closest defender’s unique identifier.
  17. Close_Def_Dist: The closest defender’s distance to the shooter in feet.
  18. Fgm: Whether the shooter made the shot.
  19. Pts: The shot’s point value (0, 2 or 3).
  20. Player_Name: The shooter’s first and last name.
  21. Player_Id: The shooter’s unique identifier.

Note: The original dataset contained 128,069 two- and three-point shots. After removing all two-point shots, and all three-point shots with a missing (or unimputable) value on the Shot_Clock variable, the size decreased to 32,511. For a value to be imputable, there had to be 24 seconds or less on the game clock when the player took the shot. In that case, the decision was made to replace the missing Shot_Clock value with the Game_Clock value.

ACKNOWLEDGEMENTS

The author would like to thank David Clemm, Robert Eisinger, Ward Fonrose, John Geraci, Ryan Heaton, Adam Hoeflich, Priam Lacassagne, Roxane Lacassagne, and Mark Naples for reviewing earlier versions of this paper, and for providing helpful comments and suggestions. The author is particularly thankful to Dan Dougherty (who passed away in 2022) and Tom Northrup for their indirect contribution. Their longstanding beliefs and ideas about how basketball should be played permeate this paper’s “implications for coaches” section.

References

  1. Allison, P. (2013, February 13). What’s the Best R-Squared for Logistic Regression? Statistical Horizons. https://statisticalhorizons.com/r2logistic/
  2. Allison, P. (2015, April 1). What’s So Special About Logit? Statistical Horizons. https://statisticalhorizons.com/whats-so-special-about-logit
  3. Basketball Reference. (2023). Basketball-Reference.com. https://www.basketball-reference.com/
  4. Ben Simmons passes up a wide-open dunk Sixers vs Hawks Game 7. (2021, June 20). Www.youtube.com. https://www.youtube.com/watch?v=-EHA4UhYuQY
  5. BUD/S Hell Week. (2015, February 25). Navy SEALs. https://navyseals.com/3930/buds-hell-week/#:~:text=In%20this%20grueling%20five%2Dand
  6. DeMaris, A. (1992). Logit modeling: practical applications. Sage Publications.
  7. DeMaris, A. (1993). Odds versus Probabilities in Logit Equations: A Reply to Roncek. Social Forces, 71(3), 1057-1065.
  8. DeMaris, A.; Teachman, J.; Morgan, S. P. (1990). Interpreting Logistic Regression Results: A Critical Commentary. Journal of Marriage and the Family, 52(1), 271-277. https://doi.org/10.2307/352857.
  9. Early, D. (2022, February 24). Ben Simmons Savagely Roasted by Legendary Philly “Shot Doctor.” ClutchPoints. https://clutchpoints.com/ben-simmons-savagely-roasted-by-legendary-philly-shot-doctor
  10. Eighty Percent of Navy SEAL Candidates Fail for a Reason. (2017, September 14). SEALFIT. https://sealfit.com/80-navy-seal-candidates-fail-reason/
  11. Gelman, A. B., & Hill, J. (2009). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
  12. Joel Embiid blames Ben Simmons for game 7 loss…. (2021, June 20). Www.youtube.com. https://www.youtube.com/watch?v=sJtyx6TOPvs
  13. Johnson, E. [@MagicJohnson]. (2021, June 16). Give Hawks coach Nate McMillan a lot of credit he did the hack-a-Shaq on Ben Simmons to send him to the free throw. [Tweet]. Twitter. https://twitter.com/MagicJohnson/status/1405355621726162954
  14. Meehan, B. (2017). Predicting NBA Shots. http://cs229.stanford.edu/proj2017/final-reports/5132133.pdf
  15. MIT SLOAN Analytics Conference: Basketball Analytics. (2012, March 12).Www.sloansportsconference.com. Retrieved November 20, 2023, from https://www.sloansportsconference.com/event/basketball-analytics
  16. Mosteller, F. M. (1996). Discussant comments for So what? The implications of new analytic methods for designing NCES surveys by Robert F. Boruch and George Terhanian. In From Data to Information: New Directions for the National Center for Education Statistics, Hoachlander, G.; Griffith, J.E.; Ralph, J.H.; US Department of Education, National Center for Education Statistics: NCES 96–901, pp. 4-116-4-118.
  17. NBA shot logs. (2016). Kaggle.com. https://www.kaggle.com/dansbecker/nba-shot-logs
  18. Nourayi, M; Singhvi, M. (2021, January 15). The Impact of NBA New Rules on Games. The Sport Journal. https://thesportjournal.org/article/the-impact-of-nba-new-rules-on-games/
  19. Pampel, F. C. (2000). Logistic Regression. SAGE Publications.
  20. Peterson, D. (2020, May 28). How Different Metrics Correlate with Winning in the NBA over 30 Years. Medium. https://towardsdatascience.com/how-different-metrics-correlate-with-winning-in-the-nba-over-30-years-57219d3d1c8
  21. Pina, M. (2021, June 20). Ben Simmons’s Flaws Laid Bare in Potential End of the Process. Sports Illustrated. https://www.si.com/nba/2021/06/21/sixers-hawks-game-7-ben-simmons-flaws-trae-young
  22. Ramsay, J. (1963). Pressure Basketball.
  23. Schwartz, R. C. (2023). Introduction to Internal Family Systems therapy (2nd ed.). Sounds True.
  24. Shadick, N. A.; Sowell, N. F.; Frits, M. L.; Hoffman, S. M.; Hartz, S. A.; Booth, F. D.; Sweezy, M.; Rogers, P. R.; Dubin, R. L.; Atkinson, J. C.; Friedman, A. L.; Augusto, F.; Iannaccone, C. K.; Fossel, A. H.; Quinn, G.; Cui, J.; Losina, E.; Schwartz, R. C. (2013). A Randomized Controlled Trial of an Internal Family Systems-based Psychotherapeutic Intervention on Outcomes in Rheumatoid Arthritis: A Proof-of-Concept Study. The Journal of Rheumatology.
  25. Stats LLC and NBA to make STATS SportVU Player Tracking data available to more fans than ever before. (2016, January 19). NBA.com: NBA Communications. https://pr.nba.com/stats-llc-nba-sportvu-player-tracking-data/
  26. Terhanian, G. (2019). The Possible Benefits of Reporting Percentage Point Effects. International Journal of Market Research, 61(6), 635–650.
  27. Thomas, L. (2021, October 3). Ben Simmons and the Acceptance of Failure. The New Yorker. https://www.newyorker.com/sports/sporting-scene/ben-simmons-and-the-acceptance-of-failure
  28. Thorp, E. O. (2018). A man for all markets: from Las Vegas to Wall Street, how I beat the dealer and the market. Random House.
  29. TNT’s Charles Barkley rants about analytics in NBA, Houston Rockets GM Daryl Morey. (2015, February 10). Www.youtube.com. https://www.youtube.com/watch?v=2asGeItzGWM
  30. Williams, R. (2012). Using the Margins Command to Estimate and Interpret Adjusted Predictions and Marginal Effects. The Stata Journal, 12(2), 308–331.
  31. Zwerling, J. (2014, August 27). Team USA’s Klay Thompson Breaks Down the Skills That Make Him a Shooting Star. Bleacher Report. https://bleacherreport.com/articles/2173236-team-usas-klay-thompson-breaks-down-the-skills-that-make-him-a-shooting-star
2024-05-21T13:46:56-05:00May 17th, 2024|General, Research, Sports Management|Comments Off on Advice on making the most of basketball three-point shot data

An Analysis of the Geographic Distribution of Minor League Sports Teams

Authors: Dr. Mark Mitchell1, Richard Flight2, and Sara Nimmo3


Corresponding Author:

Mark Mitchell, DBA

Professor of Marketing

Associate Dean, Wall College of Business

NCAA Faculty Athletics Representative (FAR)

Coastal Carolina University

P. O. Box 261954

Conway, SC 29528

mmitchel@coastal.edu

(843) 349-2392

1Mark Mitchell, DBA is Professor of Marketing at Coastal Carolina University in Conway, SC.

2Richard Flight, PhD is Associate Professor of Marketing at Coastal Carolina University in Conway, SC. He previously worked in minor league baseball with the Memphis Redbirds and Birmingham Barons as well as in DI collegiate athletics at Samford University.

3Sara Nimmo currently serves as Assistant Director of Marketing for San Diego State University Athletics. She previously served as a Fan Engagement Assistant with MiLB’s Myrtle Beach Pelicans.

An Analysis of the Geographic Distribution of Minor League Sports Teams

ABSTRACT

Purpose: The purpose of this study is to evaluate the geographic distribution of minor league sports teams in the United States and Canada.

Methods: A census of minor league sports teams was assembled by collecting data from league websites and other sources. Then, the data was sorted by city and state (or Canadian province). This process allowed the identification of the cities and states/provinces that host the largest number of minor league teams and leagues.

Results: Minor league sports teams can be found in 43 of 50 U.S. states (86%) and the District of Columbia (i.e., Washington, DC) and 8 of 10 (80%) Canadian provinces. There are 12 North American cities or metropolitan areas that host four or more minor league teams: Atlanta, GA; Austin, TX; Birmingham, AL; Dallas-Fort Worth, TX; Des Moines, IA; Las Vegas, NV; New York, NY; Oklahoma City, OK; Salt Lake City, UT; San Antonio, TX; San Jose, CA; and Toronto, Ontario. Additionally, there are 24 cities that host three minor league teams that are distributed across 20 different states and provinces.

Conclusions: While select cities have attracted multiple minor league teams to their communities, these teams tend to be dispersed all over the United States and Canada. As expected, states with larger populations tend to host more teams. States with weather that allows year-round outdoor play tend to host more teams. Cities with successful franchises can use that demonstrated fan support to attract new teams and leagues to their communities.

Applications in Sport: In addition to offering family entertainment, the minor leagues offer both players and professional staff the opportunity to enter the business of professional sports and work toward careers at the major league level. The results of this study illustrate where minor league teams can be found in the United States and Canada. From this list of cities, sports fans can watch up-and-coming players develop. Furthermore, sport educators can direct their students (i.e., aspiring sport administrators) to the cities and teams that may provide them with an entry-point into the field of sports administration.

Key Words: Minor league sports, sports expansion possibilities, minor league team affiliations

INTRODUCTION

Organized sports may be thought of as the games people play. However, there is a very large business and financial infrastructure behind the scenes to allow those games to be played and the related fan experiences to be realized. Plunket Research estimated the total U.S. sports and recreation industry to be valued at over $550 billion in 2020 with the global market estimated to be worth $1.5 trillion (28).

Players making it to the major league of their sport have had to successfully navigate a developmental path by playing in the minor league system and earning successive promotions to earn a spot on a major league roster. In some cases, such as baseball, basketball, and hockey, these minor league teams represent hierarchical levels in a player development path that is clearly laid out. This focus on player development prompted Major League Baseball to restructure its minor league system beginning with the 2021 season. The new model provided for increased player salaries, modernized facilities, and reduced travel time and costs. The restructuring reduced the number of affiliated teams from 160 to 120 (12, 20).

Many colleges and universities offer sport management programs to serve interested students. Currently, there are 421 sport management programs in the United States at the Associates, Bachelors, Masters, and Doctoral levels (33). At the undergraduate level, Sport Management is the 38th most popular major among students. Each year, over 11,000 bachelor’s degrees in sport management are awarded (10). Furthermore, students from other disciplines (e.g., business, physical therapy, nutrition, hospitality, and others) often seek to apply their skills in the business and operation of sports teams. Much like athletes who seek to secure a position in the minor leagues to begin their hopeful path to the major leagues, many people interested in careers in sports administration and sports management begin their careers in the minor leagues as well.

The purpose of this study is to conduct an analysis of the geographic distribution of minor league sports teams and leagues in the United States and Canada. The results of this study will illustrate the cities, states, and provinces that currently host the most minor league teams. From this data, sports fans can incorporate a minor league game into their travel plans while prospective employees can see where their opportunities may be found and focus their job search activities accordingly. First, a broad overview of major and minor league sports is provided, including a look at the possible affiliations between major and minor league teams. Second, the geographic distribution of minor league teams will be provided to illustrate those states and cities that host multiple teams. Finally, the matrices of major and minor league cities are examined to identify the communities most likely to be discussed as expansion cities for major league sports.

THE ORGANIZATION OF MAJOR LEAGUE AND MINOR LEAGUE SPORTS 

In the sections that follow, the teams and leagues involved in the major spectator team sports are profiled. Sports that have a longer professional history (such as football, baseball, or basketball) have a clear path of player development and a delineation between their ‘major’ and ‘minor’ leagues. For these sports, the minor league teams are included in this study.

Other newer professional leagues (such as women’s soccer, women’s ice hockey, or men’s lacrosse), have not yet established a hierarchical path for player development. Rather, it is evolving and, in some cases, changing annually. As such, the athletes who do progress to compete at the highest available professional level (i.e., NWSL, PWHL, or NLL) do realize a pinnacle or ‘major’ achievement. However, these teams and leagues are more similar operationally (attendance, budgets, etc.) to minor league sports rather than the traditional major league sports of football, baseball, or basketball. For these sports, these teams and leagues are included in this study. In the future, with the stability and expansion of these leagues, these sports may attain the classification of ‘major’ league sports.

Men’s Baseball

There are currently 30 Major League Baseball (MLB) teams operating in the United States and Canada (18). Each of these teams has an affiliated Triple-A, Double-A, High-A, and Low-A team. Additionally, MLB operates two leagues for first-year players: Arizona Complex League (ACL) and the Florida Complex League (FCL) where games are played at the Spring Training sites of MLB teams. Additional teams bring the total to 179 teams across 17 leagues in 43 states and 4 provinces (20). A list of minor league baseball teams is provided in Appendix A.

Appendix A: Major League Baseball and Minor League Affiliates 

Major League Triple-A Double-A High-A Low-A 
Arizona Diamondbacks Reno Aces Amarillo Sod Poodles Hillsboro Hops Visalia Rawhide 
Atlanta Braves Gwinnett Stripers Mississippi Braves Rome Braves Augusta GreenJackets 
Baltimore Orioles Norfolk Tides Bowie Baysocks Aberdeen IronBirds Delmarva Shorebirds 
Boston Red Sox Worchester Red Sox Portland Sea Dogs Greenville Drive Salem Red Sox 
Chicago Cubs Iowa Cubs Tennessee Smokies South Bend Cubs Myrtle Beach Pelicans 
Chicago White Sox Charlotte Knights  Birmingham Barons Winston-Salem Dash Kannapolis Cannon Ballers 
Cincinnati Reds Louisville Bats Chattanooga Lookouts Dayton Dragons Daytona Tortugas 
Cleveland Guardians Columbus Clippers Akron RubberDucks Lake County Captains Lynchburg Hillcats 
Colorado Rockies Albuquerque Isotopes Hartford Yard Goats Spokane Indians Fresno Grizzlies 
Detroit Tigers Toledo Mud Hens Erie SeaWolves West Michigan Whitecaps Lakeland Flying Tigers 
Houston Astros Sugar Land Skeeters Corpus Christi Hooks Asheville Tourists Fayetteville Woodpeckers 
Kansas City Royals Omaha Storm Chasers Northwest Arkansas Naturals Quad Cities River Bandits Columbia Fireflies 
Los Angeles Angels Salt Lake Bees Rocket City Trash Pandas Tri-City Dust Devils Inland Empire 66ers 
Los Angeles Dodgers Oklahoma City Dodgers Tulsa Drillers Great Lakes Loons Rancho Cucamonga Quakes 
Miami Marlins Jacksonville Jumbo Shrimp Pensacola Blue Wahoos Beloit Snappers Jupiter Hammerheads 
Milwaukee Brewers Nashville Sounds Biloxi Shuckers Wisconsin Timber Rattlers Carolina Mudcats 
Minnesota Twins St. Paul Saints Wichita Wind Surge Cedar Rapids Kernels Fort Myers Mighty Mussels 
New York Mets Syracuse Mets Binghamton Rumble Ponies Brooklyn Cyclones St. Lucie Mets 
New York Yankees Scranton/Wilkes-Barre RailRiders Somerset Patriots Hudson Valley Renegades Tampa Tarpons 
Oakland Athletics Las Vegas Aviators Midland RockHounds Lansing Lugnuts Stockton Ports 
Major League Triple-A Double-A High-A Low-A 
Philadelphia Phillies Lehigh Valley IronPigs Reading Fightin Phils Jersey Shore BlueClaws Clearwater Threshers 
Pittsburgh Pirates Indianapolis Indians Altoona Curve Greensboro Grasshoppers Bradenton Marauders 
San Diego Padres El Paso Chihuahuas San Antonio Missions Fort Wayne TinCaps Lake Elsinore Storm 
San Francisco Giants Sacramento River Richmond Flying Squirrels Eugene Emeralds San Jose Giants 
Seattle Mariners Tacoma Rainiers Arkansas Travelers Everett AquaSox Modesto Nuts 
St. Louis Cardinals Memphis Redbirds Springfield Cardinals Peoria Chiefs Palm Beach Cardinals 
Tampa Bay Rays Durham Bulls Montgomery Biscuits Bowling Green Hot Rods Charleston RiverDogs 
Texas Rangers Round Rock Express Frisco RoughRiders Hickory Crawdads Down East Wood Ducks 
Toronto Blue Jays Buffalo Bisons New Hampshire Fisher Cats Vancouver Canadians Dunedin Blue Jays 
Washington Nationals Rochester Red Wings Harrisburg Senators Fredericksburg Nationals Fredericksburg Nationals 

Source: (20).  

Men’s Basketball

There are currently 30 National Basketball Association (NBA) teams playing in the United States and Canada; 28 of these teams have an affiliated G-League (or, minor league) team (27). Two teams (G League Ignite of Las Vegas, NV; Capitanes Ciudad De Mexico of Mexico City) operate independently and without NBA team affiliation (1). A profile of NBA G-League teams is provided in Appendix B.

Appendix B: G-League Teams and NBA Affiliations 

G-League Teams Location NBA Affiliation 
Capital City Go-Go Washington, DC Washington Wizards 
College Park Skyhawks College Park, GA Atlanta Hawks 
Maine Celtics Portland, ME Boston Celtics 
Long Island Nets Uniondale, NY Brooklyn Nets 
Greensboro Swarm Greensboro, NC Charlotte Hornets  
Windy City Bulls Hoffman Estates, IL Chicago Bulls 
Cleveland Charge Cleveland, OH Cleveland Cavaliers  
Texas Legends Frisco, TX Dallas Mavericks 
Grand Rapids Gold Grand Rapids, MI Denver Nuggets 
Motor City Cruise Detroit, MI Detroit Pistons  
Santa Cruz Warriors  Santa Cruz, CA Golden State Warriors 
Rio Grande Vipers Hildago, TX Houston Rockets 
Fort Wayne Mad Ants Fort Wayne, IN Indiana Pacers 
Agua Caliente Clippers of Ontario Ontario, CA Los Angeles Clippers 
South Bay Lakers El Segunda, CA Los Angeles Lakers 
Memphis Hustle Southaven, MS Memphis Grizzlies  
Sioux Falls Skyforce Sioux Falls, SD Miami Heat 
Wisconsin Herd Oshkosh, WI Milwaukee Bucks 
Iowa Wolves  Des Moines, IA Minnesota Timberwolves 
Birmingham Squadron Birmingham, AL New Orleans Pelicans 
Westchester Knicks White Plains, NY New York Knicks 
Oklahoma City Blue Oklahoma City, OK Oklahoma City Thunder 
Lakeland Magic Lakeland, FL Orlando Magic 
Delaware Blue Coats  Newark, DE Philadelphia 76ers  
Stockton Kings  Stockton, CA Sacramento Kings 
Austin Spurs  Austin, TX San Antonio Spurs 
Raptors 905 Mississauga, ONT Toronto Raptors 
Salt Lake City Stars  Salt Lake City, UT Utah Jazz 

Source: (27). 

Women’s Basketball

There are currently 12 Women’s National Basketball Association (WNBA) teams playing in the United States (40). There is no existing minor league development system for the WNBA. With just 12 teams and a maximum of 12 roster spots per team (compared to 15 roster spots for the NBA), the competition for one of these coveted roster spots is intense. Players selected in the three-round draft are not guaranteed a roster spot. There has not been any recent expansion of the WNBA despite calls to expand opportunities for women athletes (39).

Men’s Hockey

There are currently 32 National Hockey League (NHL) teams playing in the United States and Canada (24). The American Hockey League (AHL) serves as the top development league for the NHL. There are currently 32 AHL teams playing in the United States and Canada (6). The vast majority of AHL players were selected in the NHL draft and have been signed to player development contracts (17). A level below the AHL is the ECHL (formerly known as the East Coast Hockey League) with 28 teams, with each team affiliated with an AHL and NHL team (11). A list of AHL and ECHL teams is provided in Appendix C.

Appendix C: American Hockey League Teams and Affiliated NHL Teams 

NHL Team ACL Affiliated Team ECHL Affiliated Team 
Anaheim Ducks San Diego Gulls Tulsa Oilers 
Arizona Coyotes Tucson Roadrunners Atlanta Gladiators 
Boston Bruins Providence Bruins Maine Mariners 
Buffalo Sabres Rochester Americans Cincinnati Cyclones 
Calgary Flames Calgary Wranglers Rapid City Rush 
Carolina Hurricanes Chicago Wolves Norfolk Admirals 
Chicago Blackhawks Rockford Icehogs Indy Fuel 
Colorado Avalanche Colorado Eagles Utah Grizzlies 
Columbus Blue Jackets Cleveland Monsters  Kalamazoo Wings 
Dallas Stars Texas Stars Idaho Steelheads 
Detroit Red Wings Grand Rapids Griffins Toledo Walleye 
Edmonton Oilers Bakersfield Condors Fort Wayne Komets 
Florida Panthers  Charlotte Checkers Florida Everglades 
Los Angeles Kings Ontario Reign Greenville Swamp Rabbits 
Minnesota Wild Iowa Wild Iowa Heartlanders 
Montreal Canadians Laval Rocket Trois-Rivieres Lions 
Nashville Predators Milwaukee Admirals No ECHL team affiliation 
New Jersey Devils Utica Comets Adirondack Thunder 
New York Islanders Bridgeport Islanders Worchester Railers 
New York Rangers  Hartford Wolf Pack Jacksonville Icemen 
Ottawa Senators Belleville Senators Allen Americans 
Philadelphia Flyers Lehigh Valley Phantoms Reading Royals 
Pittsburgh Penguins Wilkes-Barre/Scranton Penguins Wheeling Nailers 
San Jose Sharks San Jose Barracuda Wichita Thunder 
Seattle Kraken Coachella Valley Firebirds Kansas City Mavericks 
St. Louis Blues Springfield Thunderbirds No ECHL team affiliation 
Tampa Bay Lightning Syracuse Crunch Orlando Solar Bears 
Toronto Maple Leafs Toronto Marlies Newfoundland Growlers 
Vancouver Canucks Abbotsford Canucks No ECHL team affiliation 
Vegas Golden Knights Henderson Silver Knights Savannah Ghost Pirates 
Washington Capitals Hershey Bears South Carolina Stingrays 
Winnipeg Jets Manitoba Moose No ECHL team affiliation 

Source: (13). 

Men’s Soccer

There are currently 29 Major League Soccer (MLS) teams playing in the United States and Canada (19). The USL Championship League is sanctioned by the U.S. Soccer Federation as a Division II professional league. The USL Championship League includes 24 teams located in the United States with expansion teams planned. A level below, the USL League One has 12 teams with 2 expansion teams planned. (36). A list of USL Championship and USL League One teams is provided in Appendix D.

Source: (36). 

Women’s Soccer

There are currently 14 National Women’s Soccer League (NWSL) teams competing in the United States (26). A list of NWSL teams is provided in Appendix E. The United Soccer League (USL) is introducing the USL W League in Summer 2024. There are plans for 44 teams located in 20 different states. The USL W League hopes to “bring elite women’s soccer to communities across the U.S., creating more opportunities to play, watch and work in the women’s game.” The USL W league will be introduced as a para-professional league, meaning the players will retain their amateur status (37). For this reason, these teams are not included in this analysis.

Men’s Football

There are currently 32 National Football League (NFL) teams competing in the United States (23) and 9 Canadian Football League (CFL) teams competing in Canada (9). Over time, there have been competing and/or feeder leagues to the NFL, including the World Football League (WFL), the United States Football League (USFL), the Extreme Football League (XFL), and the Spring League. In December 2023, it was announced that the USFL and XFL would merge to create the United Football League (UFL) and begin play in the spring of 2024 (32). Through the merger process, eight teams were retained and eight teams ceased operations. One city (Houston, TX) previously hosted both USFL and XFL teams prior to the merger. The XFL Houston Roughnecks ‘survived’ the merger while the USFL Houston Gamblers did not. The following cities lost their USFL and XFL teams beginning in the 2024 season (16):

New York/New Jersey Metro

New Orleans, LA

Philadelphia, PA

Pittsburgh, PA

Orlando, FL

Seattle, WA

Las Vegas, NA

Indoor or Arena Football has been played in various locations since the mid-1980s with the Indoor Football League (IFL) being the longest-running league. There are 16 IFL teams playing in 2024. IFL personnel, including players, coaches, scouts and front office professionals have transitioned to the National Football League (15). In addition, the National Arena League (NAL) operates a 6-team league (22). A review of the various non-NFL football teams is provided in Appendix F.

Men’s Lacrosse

There are currently 15 National Lacrosse League (NLL) teams competing in the United States and Canada (25). The league plays its games in indoor arenas, often the same arenas that host minor league hockey and NBA G-League basketball teams. A list of NLL teams is provided in Appendix G. Beginning in Summer 2023, the Premier Lacrosse League started play with 8 teams in the United States. In its inaugural season, all 8 teams travelled to a select city for competition each weekend. City names are not attached to teams (29). As such, these teams are not included in this analysis.

Women’s Professional Hockey

The Professional Women’s Hockey League (PWHL) began its inaugural season in January 2024. The newly-created league consists of 6 teams across the United States and Canada with teams located in Boston, Minneapolis, Montreal, New York City, Ottawa, and Toronto (30).

Miscellaneous: Athletes United

Since 2020, Athletes Unlimited has introduced professional leagues in women’s basketball, volleyball, lacrosse, and softball. The leagues state they are ‘player-centric’ while avoiding the traditional model of city-identified teams. With this model, many American athletes can play professionally in their home country rather than competing abroad (7). However, teams are not based in home cities. As such, these teams are not included in this analysis.

METHODOLOGY 

The minor league teams and leagues profiled above that operated in the 2023-24 seasons were identified and assembled into a database to allow the analysis of the location of the teams. The sorting function in Microsoft Excel allowed the researchers to identify the frequency of occurrence for city, state, and province, resulting in the identification of the following groups: 

  1. States and/or provinces that host the most minor league teams; 
  1. Cities that host the most minor league teams; 
  1. Cities that are most likely to be considered for league expansion in the future. 

RESULTS 

While select cities have attracted multiple minor league sports teams to their communities, these teams tend to be dispersed all over the United States and Canada. In the United States, 43 of 50 states (86%) host at least one minor league team. The states that do not current host a team are Alaska, Hawaii, Louisiana, Montana, North Dakota, Vermont, and Wyoming. In the Lower 48 states (excluding Alaska and Hawaii), minor league sports can be found in 43 of 48 (90%) of the states with the missing states being sparsely populated (with the notable exception of Louisiana).

In Canada, minor league teams can be found in 8 of 13 Canadian Provinces or Territories. The provinces that do not current host a team are New Brunswick, Northwest Territories, Nunavut, Prince Edward Island, and Yukon. Similar to the pattern found in the United States, teams can be found in 8 of 10 Canadian provinces (80%) with no teams located in the three more sparsely-populated Canadian Territories of Northwest, Nunavut, and the Yukon.

A city-by-city mapping of each minor league team located in the United States and Canada is presented in Figure 1. The heat mapping function in Microsoft Excel was used to generate Figure 2, a visual presentation of the frequency of location of minor league teams per state and province.

Interestingly, minor league teams have been located previously in Hawaii (baseball), Louisiana (baseball), Montana (baseball), North Dakota (indoor football), Vermont (baseball), and Wyoming (baseball). However, no teams existed in these states during the 2023-24 season. In fact, some of these baseball teams were among the 40 teams affected by the realignment of minor league baseball to begin the 2021 season (see 20, 31).

State-by-State Analysis

The following states host the largest number of minor league teams:

California (26 teams in 17 different communities)

Texas (25 teams in 15 different communities)

Florida (23 teams in 16 different communities)

New York (19 teams in 12 different communities)

North Carolina (17 teams in 12 different communities)

Pennsylvania (12 teams in 9 different communities)

Ohio (10 teams in 7 different communities)

Georgia (9 teams in 8 different communities)

Iowa (8 teams in 5 different communities)

Michigan (8 teams in 5 different communities)

South Carolina (8 teams in 4 different communities)

Oklahoma (7 teams I 2 different communities)

Washington (7 teams in 4 different communities)

Arizona (7 teams in 3 different communities)

Indiana (7 teams in 3 different communities)

Virginia (7 teams in 5 different communities)


Province-by Province Analysis 

The following Canadian provinces host the largest number of minor league teams:

Ontario (6 teams in 3 communities)

British Columbia (3 teams in 2 communities)

Quebec (3 teams in 2 communities)

Alberta, Manitoba, Newfoundland and Labrador, Nova Scotia, and Saskatoon (1 team each)

It must be noted that junior hockey is a very popular spectator sport in Canada. However, most junior hockey players are classified as ‘amateurs’ (2). For this reason, Canadian junior hockey teams are not included in this analysis.

City-by-City Analysis 

As illustrated above, many communities host more than one minor league team. Furthermore, some cities with minor league teams also host major league sports teams. For example, Charlotte, North Carolina hosts an NFL team (Carolina Panthers), an NBA team (Charlotte Hornets), and an MLS team (Charlotte FC) in addition to hosting minor league teams in baseball, hockey, and soccer. Nearby Greensboro, North Carolina also hosts three minor league teams in basketball, indoor football, and baseball but hosts no major league teams.

Table 1 provides an overview of the 12 cities that host four or more minor league teams. The reader will note that some the cities are larger metropolitan areas with teams located both in the city and the suburbs. Atlanta, for example, has one team in the city but four teams in its suburbs in close proximity to central Atlanta. These communities with a concentration of minor league teams often host additional sporting events, such as golf tournaments, auto races, or college football bowl games.

San Diego is an interesting case. In addition to hosting the San Diego Padres (MLB), the city previously hosted an NFL team (San Diego Chargers) and two NBA teams (San Diego Rockets and San Diego Clippers). All three of these professional teams continue to exist but relocated to other cities. San Diego has effectively attracted minor league teams to fill the voids left by the departure of these teams. Recently, the San Diego Loyal soccer team (USL Championship League) ceased operations after the 2023 season after failing to find a long-term home stadium option (14). However, an MLS expansion team (to be known as San Diego FC) will begin play in the 2025 season (34).

Table 2 provides an overview of cities that host three minor league teams. Included in Table 2 is each city’s ranking in size as a media market (21). Also, any professional teams in these same cities are shown with their table cell shaded. Sports not currently playing in those communities represent opportunities to expand a city’s minor league sports portfolio. It is interesting to note that some of these 3-team cities (such as Worchester, MA or Tacoma, WA) are very close to neighboring cities of top 15 media markets.

DISCUSSION 

As expected, larger states with larger populations tend to host more minor league teams. Concurrently, cities with larger populations (and larger media markets) tend to host more minor league teams. The three states with largest number of minor league teams (California, Texas, and Florida) also offer a climate conducive to year-round outdoor activities. Cities with successful franchises can use that demonstration of fan support to attract new teams and leagues to their communities. Furthermore, shared facilities (such as an arena that can host basketball, hockey, and arena football) can help bring new teams to a community.

As previously noted, many cities host both major and minor league teams. Intuitively, these locations should attract the most attention should leagues consider expansion as the fan bases have demonstrated sufficient levels of support to sustain a major league team. These cities are listed in Table 3. Additionally, these cities tend to be the larger media markets with larger numbers of consumers. As an illustration, at the time of this writing the Oakland Athletics are strongly considering moving to Las Vegas, NV and have already received the approval to move by Major League Baseball owners (3-5).

INSERT TBL3

A Cautionary Note – Minor League Baseball Relocations 

In 2020, Major League Baseball issued new facility standards for minor league teams, including: minimum clubhouse sizes for both home and visiting teams; food preparation and dining areas attached to clubhouses; better field lighting; more and better training space for players; separate space for female staffer, and others (31). Given that many minor league stadiums are municipally-owned, some communities may be unwilling or unable to make the needed investments in upgrades and may see their teams migrate to other communities, particularly at the A- and AA-levels.

In fact, some team movement has already been announced as the Kinston, North Carolina team (now known as the Down East Wood Ducks) have been purchased by Diamond Baseball Holdings (the largest owner of minor league baseball franchises) and will relocate to a new yet-to-be-built stadium in Spartanburg, South Carolina and assume a new team name as early as the 2025 season (8). This move marks the return of minor league baseball to Spartanburg, which previously hosted the Spartanburg Phillies from 1963-1980 and again from 1986-1994 (38).

CONCLUSIONS

Minor league sports teams are widely distributed across the United States and Canada with 86% of U.S. states and 80% of Canadian provinces hosting at least one minor league team. These 43 U.S. states host 97% of the U.S. population while the 8 provinces host 96% of the Canadian population. The highest concentration of teams can be found in four geographic areas in the United States: (1) the southeast Atlantic corridor from Virginia south through Florida; (2) the eastern Midwest and Northeast including Pennsylvania, New York, and Massachusetts; (3) the Southwest including Texas and its border states; and (4) the West coast primarily concentrated in California. In Canada, Ontario (i.e., the Toronto area), British Columbia (i.e., the Vancouver area), and Quebec host more minor league teams than the other provinces.

In addition to offering family entertainment, the minor leagues offer both players and professional staff the opportunity to enter the business of professional sports and work toward careers at the major league level. The results of this study illustrate where minor league sports teams can be found in the United States and Canada. From this list of cities, sports fans can watch up-and-coming players develop. Furthermore, sport educators can direct their students (i.e., aspiring sport administrators) to teams for internships and entry-level employment opportunities.

APPLICATION IN SPORT

In team sports, most professional athletes go through a player development process that includes some stint in the minor leagues in the hopes of earning a spot on a major league team. Similarly, many sport administrators begin their careers working for minor leagues and affiliated teams as they learn their craft and assemble the needed experiences for (hopeful) promotion to the major league level. The results of this study allow interested parties to easily identify the communities with greater access to minor league sports (for both fans and prospective employees). Sports fans should find this information helpful as minor league sports provide a good financial value in family entertainment. College students may find internship and employment opportunities with these minor league teams to aid their entry into a career of sport administration and management. Sport administration educators may find this information helpful as they advise and counsel their students for internships, co-operative employment opportunities, and job placement after graduation.

The communities identified here with multiple sports properties may allow a student to work in multiple sports in the same city (say, basketball in winter and baseball in spring, summer, and fall). In many instances, there may be an overlap in the ownership groups of minor league teams. This overlap in ownership may expand professional opportunities for employees as well-performing employees are offered additional positions and responsibilities elsewhere in the organization.

These communities also tend to host other events, such as college football bowl games or golf tournaments. These special events will need qualified staff to deliver these events, which will include people already living and working in those communities in the sports industry. Much like athletes in the minor leagues work to advance toward the major league ranks, so, too, can staff personnel ‘climb the ladder’ toward careers in the major leagues.

References

  1. Adams, Luke (2022, November 6). NBA G League affiliate players for 2022/23. Retrieved from: https://www.hoopsrumors.com/2022/11/nba-g-league-affiliate-players-for-2022-23.html
  2. Adkisson, Dan (2022, May 10). Junior hockey: Understanding the path to the NHL. Retrieved from: https://mayorsmanor.com/2022/05/junior-hockey-understanding-the-path-to-the-nhl/
  3. Akers, Mick (2023a, April 19). Major-league deal: A’s to purchase land near Strip for new ballpark. Las Vegas Review-Journal. Retrieved from: https://www.reviewjournal.com/sports/athletics/major-league-deal-as-to-purchase-land-near-strip-for-new-ballpark-2764701/
  4. Akers, Mick (2023b, July 15). A’s to Vegas: What’s next in the relocation process? Las Vegas Review-Journal. Retrieved from: https://www.reviewjournal.com/sports/athletics/as-to-vegas-whats-next-in-the-relocation-process-2872485/
  5. Akers, Mick (2023c, November 16). ‘A great asset’: A’s move to Las Vegas approved; Strip ballpark on horizon. Las Vegas Review-Journal. Retrieved from: https://www.reviewjournal.com/sports/athletics/a-great-asset-as-move-to-las-vegas-approved-strip-ballpark-on-horizon-2940262/
  6. American Hockey League (2023). 2023-24 NHL affiliations. Retrieved from: https://theahl.com/nhl-affiliations-2023-24
  7. Athletes Unlimited (2023). Who are we? A network of next generation professional sports leagues. Retrieved from: https://auprosports.com/who-we-are/
  8. Boschult, C. (2023, October 3). Spartanburg baseball team’s new GM talks new role, new team name. Charleston Post and Courier. Retrieved from: https://www.postandcourier.com/spartanburg/news/spartanburg-baseball-team-s-new-gm-talks-new-role-new-team-name/article_f72e79e2-6122-11ee-9f13-d3cd51788fa7.html
  9. Canadian Football League (2023). List of teams. Retrieved from: https://www.tsn.ca/cfl/teams
  10. College Factual (2022). 2022 most popular bachelor’s degree colleges for sports management. Collegefactual.com. Retrieved from: https://www.collegefactual.com/majors/parks-recreation-fitness/health-and-physical-education/sports-management/rankings/most-popular/bachelors-degrees/
  11. ECHL (2023). NHL/AHL affiliates. Retrieved from: https://echl.com/teams/nhl-ahl-affiliations
  12. ESPN.com. (2021, February 12). Minor league affiliates tracker: How MLB’s restructure shakes out. ESPN.com. Retrieved from: https://www.espn.com/mlb/story/_/id/30484549/minor-league-affiliates-tracker-how-mlb-restructure-shakes-out
  13. FloHockey (2023, January 20). Minor league hockey team affiliates breakdown. Retrieved from: https://www.flohockey.tv/articles/10384919-nhl-minor-league-hockey-team-affiliates-breakdown
  14. Hernandez, C. (2023, August 4). Landon Donovan’s San Diego Loyal USL team to fold after 2023. ESPN.com. Retrieved from: https://www.espn.com/soccer/story/_/id/38251432/landon-donovan-san-diego-loyal-usl-team-fold-2023
  15. Indoor Football League (2024). List of teams. Retrieved from: https://goifl.com/sports/2020/11/19/current-teams.aspx
  16. Kasabian, P. (2024, January 1). UFL announces teams, conferences for 2024 season after XFL, USFL merger. Bleacher Report. Retrieved from: https://bleacherreport.com/articles/10103209-ufl-announces-teams-conferences-for-2024-season-after-xfl-usfl-merger
  17. Keshavjee, K. (2020, October 31). A comprehensive guide to all hockey leagues in North America. The Win Column. Retrieved from: https://thewincolumn.ca/2020/10/31/a-comprehensive-guide-to-all-the-hockey-leagues-in-north-america/
  18. Major League Baseball (2024). MLB team contact information. Retrieved from: https://www.mlb.com/team
  19. Major League Soccer (2024). List of clubs. Retrieved from: https://www.mlssoccer.com/clubs/
  20. Mayo, T. (2021, May 2). Minors return with new look, structure: New model includes player salary increases, modernized facility standards, reduced travel. MLB.com. Retrieved from: https://www.mlb.com/news/new-minor-league-baseball-structure
  21. My Media Jobs (2023). 2022-23 DMA market rankings. Retrieved from: https://mymediajobs.com/market-rankings
  22. National Arena League (2024). List of teams. Retrieved from: https://www.nationalarenaleague.com/stats#/1200/teams?division_id=28829
  23. National Football League (2023). List of teams. Retrieved from: https://www.nfl.com/teams/
  24. National Hockey League (2024). List of teams. Retrieved from: https://www.nhl.com/info/teams
  25. National Lacrosse League (2024). List of teams. Retrieved from: https://www.nll.com/nll-teams/
  26. National Women’s Soccer League (2024). List of teams. Retrieved from: https://www.nwslsoccer.com/
  27. NBA G League (2024). List of teams. Retrieved from: https://gleague.nba.com/
  28. Plunket Research (2021). Complete guide to the sports & recreation industry from Plunkett Research 2022. Retrieved from: https://www.plunkettresearch.com/complete-guide-to-the-sports-recreation-industry-from-plunkett-research-2022/
  29. Premiere Lacrosse League (2023). List of teams. Retrieved from: https://premierlacrosseleague.com/
  30. Professional Women’s Hockey League (2024). List of teams. Retrieved from:
  31. https://www.thepwhl.com/en/stats/standings
  32. Reichard, K. (2020, November 2). MiLB facility guidelines released, owners sanguine. Ballpark Digest. Retrieved from: https://ballparkdigest.com/2020/11/02/milb-facility-guidelines-released-owners-sanguine/
  33. Seifert, K. (2023, December 21). Merged XFL-USFL to be rebranded as United Football League. ESPN.com. Retrieved from: https://www.espn.com/xfl/story/_/id/39215302/merged-xfl-usfl-rebranded-united-football-league
  34. Sport Business Journal (2023). Search for sport management programs. Retrieved from: https://www.sportsbusinessjournal.com/College-University/Sports-Management-Programs.aspx
  35. Taddeo, F. (2023, October 21). San Diego’s MLS expansion team unveiled its logo, and fans roasted it mercilessly. SI.com. Retrieved from: https://www.si.com/soccer/2023/10/21/san-diegos-mls-expansion-team-unveiled-its-logo-and-fans-roasted-it-mercilessly
  36. United Football League (2024). The teams. Retrieved from: https://www.theufl.com/teams
  37. United Soccer League Championship (2024). 2024 Clubs. Retrieved from: https://www.uslchampionship.com/league-teams
  38. United Soccer League – W (2024). About the league. Retrieved from: https://www.uslwleague.com/about
  39. Visit Spartanburg (2021, August 25). Spartanburg’s baseball past, present and future. Retrieved from: https://www.visitspartanburg.com/embracing-spartanburgs-baseball-past-and-present/
  40. Voepel, M.A. (2023, May 12). WNBA expansion is coming, but when and where? ESPN.com. Retrieved from: https://www.espn.com/wnba/story/_/id/37602441/wnba-expansion-everything-know-2023-season
  41. Women’s National Basketball Association (2024). List of teams. Retrieved from: https://www.wnba.com/tickets
2024-05-01T12:50:45-05:00May 3rd, 2024|General, Research, Sports Management|Comments Off on An Analysis of the Geographic Distribution of Minor League Sports Teams
Go to Top