Relationships Among Muscle Characteristics and Rowing Performance in Collegiate Crew Members

Authors: Omid Nabavizadeh1 and Ashley A. Herda, PhD2

1Geriatric Medicine Department, University of Colorado-School of Medicine, Aurora, Colorado, United States;
2Department of Health, Sport, and Exercise Sciences, University of Kansas-Edwards Campus, Overland Park, Kansas, United States;

Corresponding Author:
Ashley A. Herda, Ph.D., CSCS*D
Assistant Professor
University of Kansas-Edwards Campus
Department of Health, Sport, and Exercise Sciences
12604 Quivira Road, Overland Park, KS 66213
Phone: (913) 897-8618

Omid Nabavizadeh is a professional research assistant at the University of Colorado.

Ashley A. Herda, Ph.D. is an assistant professor for the exercise science program at the University of Kansas Edwards Campus in Overland Park. Dr. Herda completed her Bachelor of Science in Exercise Science and Health Promotion (2006) from Florida Atlantic University in Boca Raton, Florida. She continued her education at the University of Oklahoma in Norman, Oklahoma where she earned her Master of Science in Exercise Physiology (2008) under the mentorship of Jeff Stout and Doctor of Philosophy in Exercise Physiology (2011) under the mentorship of Dr. Joel Cramer. Dr. Herda’s research interests include the investigation of the effects of nutritional supplements and/or exercise interventions on performance and body composition in men and women across the lifespan.

Relationships Among Muscle Characteristics and Rowing Performance in Collegiate Crew Members


Purpose: The purpose of this study was to explore the relationships among measurements of muscle quality and rowing performance in college-aged club rowers. Methods: Ten men and women (mean ± SD: age: 22.1 ± 4.0 years; ht: 180.5 ± 8.3 cm; wt: 79.0 ± 13.5 kg) volunteered to participate in this study. Ultrasound images were collected at 50% thigh length in a transverse plane to quantify muscle size. The sum cross-sectional area (mCSA) of these muscles was reported. Bioelectrical impedance analysis (BIA) was conducted to predict fat-free mass (FFM) and estimate total leg lean mass. One-repetition maximum leg press (LPMAX) was recorded as well as vertical jump (VJHT; cm). Lastly, participants completed a 2,000m time trial on the rowing ergometer, where the 500m average split was used in analyses. Pearson’s product moment correlations were calculated across all variables and backwards stepwise linear regression was completed using VJHT, LPMAX, FFM, and mCSA as possible predictors of 500m performance. Results: The correlations coefficients among recorded variables were all very high and significant (r = 0.867-0.950; p = 0.001-0.04). The regression analysis indicated VJHT was a significant predictor of 500m time trial performance (R2=0.903; p<0.05). Conclusions: Although rowing may often be considered an endurance sport, the single best predictor of and the strongest correlation to time trial performance is vertical jump height as an index of power. Applications in Sport: Emphasis on plyometric training may serve as one of the most important aspects of athlete development beyond rowing form and mechanics, more so than strength or hypertrophy in collegiate rowers.