Sports Medicine for Youth Soccer

Training for Optimal Performance

Soccer is a major sport for young athletes in the United States, and is also rapidly becoming a major sport for males and females for all ages. Because young athletes go through puberty at different times, they vary a great deal among each other in size and maturity. These differences pose a challenge to the athletes and their coaches. The primary characteristics of a young athlete are: motivation; physical fitness (i.e. muscle strength, power, endurance, flexibility, proper body composition, and cardiac respiratory endurance); discipline, coachability; skills; ability to be a part of a team; ability to think under stress; and good spatial orientation.

The practice sessions for soccer should seek to achieve: physical conditioning, repetitive training, proper intensity of training, flexibility, and awareness that the achievement of proper endurance for the soccer athlete requires 4-6 months of training. Also, the coach should be aware that extreme and severe high intensity and high frequency training causes damage to muscle tissues and is counterproductive to the goals of the athlete. The pre-game meals should primarily be composed of carbohydrates, and balanced meals should be eaten prior to game days. Water consumption (hydration and rehydration) should be strongly encouraged with water breaks built into the training schedule and water available upon demand.(2)

Physiological and Chronological Age

Any middle school teacher can tell you that adolescent teenagers are difficult to handle and that they vary a great deal in size, height and maturity. This is because teenagers, in addition to possessing the normal genetic inheritance of size from their parents, are also in a very fast growth period (puberty). The growth spurt on the average is around 12 years of age for girls and 14 years of age for boys. Young athletes are experiencing a turmoil period which affects them both physiologically and hormonally. Therefore, young athletes come to soccer with these inherent and at times large differences in size, shape, height, and skill level. Because of these differences, it is very difficult to mold a team at this age group into a skilled unit.

Characteristics of a Soccer Player

All of the following player characteristics need not be present before the individual plays soccer. However, the individual should either show aptitude or at least a willingness to acquire these characteristics.

 

1. Motivation

The soccer player should be interested and motivated to play the game of soccer (i.e. kicking a ball, running, passing a ball, etc.). In other words, the player is receiving an enjoyment out of performing these tasks especially when it is performed spontaneously and without adults forcing them to do so.

2. Physical Fitness

The term physical fitness connotes different meaning for different activities. In the

context of soccer, it is the ability to play soccer for 60-90 minutes without fatigue, exhaustion, or other malsymptoms of a sedentary person. The player should have the following physical fitness characteristics to play soccer:

a. muscle strength and power
b. endurance
c. flexibility
d. proper body composition
e. cardiac respiratory endurance

3. Discipline

The ability to practice and play the game in a repeated fashion several times a week.

4. Coachability

The ability to take instructions and to try to comply with these instructions.

5. Skills or ability to learn skills

The ability to conduct or learn individual soccer skills with the ball such as kicking, receiving, passing, shooting, control, etc.

6. Ability to play in a team sport

The ability to cooperate with other team members to achieve a difficult task. Also, the player should have the ability to accept less personal recognition for the sake of the team. The player also should be able to associate with others for a long time and sometimes under stressful conditions. Finally, the player should have the ability to enjoy himself with others.

7. Ability to think under stress

Most people are not as logical under stressful conditions as they are normally. However, the well trained soccer player learns what to do under the various game conditions, and also learns to think quickly under stressful conditions.

8. Good Spatial Orientation

The ability to think and visualize in three dimensions and to be relevant to the soccer field is difficult for very young players. The player should be able to learn to adapt to the spatial orientation within the field and re-position himself/herself relevant to the ball, teammates and the opposing team members.

 

Practice Sessions

The purpose of this article is not to suggest specific exercises. There are other sources for the numerous soccer practice sessions. However, we will give a general outline that all soccer practice sessions should fall within. In this manner, each coach can use their creativity to make soccer practices more enjoyable and more beneficial to the different needs of the varied groups.

The practice sessions should be designed to make the individual a better soccer player. The best practice for any sport is to play that sport repeatedly in order to develop those muscles, skills, endurance, etc….., for that sport. It is a common occurrence for those who play one sport and then suddenly play another sport to have muscle aches after the first few times of the new sport. This is because they have used a different new set of muscles than they used before. This is called specificity of training. So, the more the soccer player plays soccer, the better he/she will become. This is not to say that the soccer game should not be broken down to small segments so that it can be taught and repeatedly reinforced.

In order to prepare the individual to play soccer, players and coaches should observe the following factors:

 

1. Physical conditioning

Increased ability to sustain both aerobic and anaerobic exercises.

2. Frequency of training

This should be 2-3 times a week for youngsters and 3-4 times a week for adults.

3. Warm-up

Static stretching should last 10-30 seconds and be repeated 3-5 times. Each stretching exercise should include a larger range of motion than the previous one. In addition, after each rigorous practice session, there should be 10 minutes of low to moderate cool-down exercises. Examples of cool-down exercises in soccer are individual skill exercises; jogging lightly, and best of all just walking or dribbling the ball lightly.

4. Time to peak endurance

Quick and severe training for 2-3 weeks prior to a season as is the case in some high schools after sedentary summer, cannot achieve endurance and may be detrimental to the athlete. This is because adaptation of the cardiorespiratory system and muscle enzymes require about six months of training to reach peak endurance capacity. Moreover, it takes 2-4 weeks without training (as may be the case during the summer for high schoolers) to lose most of endurance parameters (see section on endurance for details). Therefore, a well-planned long training period is an essential part of preparing players for the season.

5. Muscle Strength and Power

The use of moderate weight lifting for young athletes to increase strength and power in moderation is an acceptable form of exercise. Weight bearing exercises for children below 13 years of age is not recommended in the standing position where there is a great deal of compression force on the legs. In order to increase muscle strength, the muscle should be challenged by at least 60% of the maximal weight lifted the first time. Furthermore, in subsequent days and weeks, the muscle must be challenged by increasing weights, with high frequency repetition. Remember, an increase in muscle strength is not necessarily associated with a large increase in size of the muscle. Low frequency repetition increases the size of the muscle (body building) rather than increasing the muscle strength. While defenders may be able to use a greater muscle mass and strength, other soccer players need to increase strength more than muscle size in order to keep their agility and speed.

Soccer is a mixture of aerobic and anaerobic sport. Therefore, the training session should combine both modes. Aerobic (like marathon running, jogging, etc…) sessions are usually composed of slow rhythmic exercises. These exercises allow the body to utilize oxygen to burn foodstuff to produce the energy needed. Therefore, the best soccer training sessions should resemble match-like conditions which involve both anaerobic and aerobic exercises. These conditions consist of the player performing, for example, the following tasks:

 

(a) Aerobic exercises such as continuous jogging to re-position to a new ball position lasting 1-5 minutes. Repetition of this action 10-50 times per game.

(b) Anaerobic exercises such as sprinting — lasting from a second to 1 min. Repetition of this action 10-50 times per game.

(c) Midfielders do most of the jogging and sprinting throughout the game since they must perform offensive and defensive tasks.

(d) Defenders tend to do mostly jogging and less sprinting.

(e) Offensive players do more sprinting than jogging.

 

The details of the sessions should be left to the creativity of the coach to combine multiple game-drills that benefit the most for a given player and team.

Usually young players play more than one position (i.e. offensive versus defensive position). However, as the young players pass puberty, they become more specialized in a given general position. Therefore, each position may require slightly different emphasis. For example:

 

(a) Offensive players do mostly sprinting than jogging and therefore would require more anaerobic process adaptation.

(b) Defensive players tend to do mostly jogging and less sprinting and therefore would require more aerobic process adaptation.

(c) Midfielders tend to do both sprinting and jogging throughout the game since they must perform both offensive and defensive tasks. Therefore, midfielders would require an intensive training to adapt to both aerobic and anaerobic processes.(1)

 

Interval Training

The soccer player can benefit from interval training. Interval training consist of work bouts with rest intervals of ratio varying from 1:3 to 1:1 (work/rest) depending on the need and the physical fitness of the individual. The work period can lasts a few seconds up to several minutes. The whole cycle can be repeated 5-20 times. A short high intensity (sprinting) work bout lasting greater than 15 seconds can improve the anaerobic system with rest period of 30 seconds. Interval training to improve the aerobic system could consist of ratio’s of 1:1 or 1:1:5. The exercise period could last 60-90 seconds in order to force oxygen consumption followed with a recovery period varying from 60 seconds up to 135 seconds.(2)

Circuit Training

Circuit training attempts to use economically time of exercise to improve strength, power and cardiorespiratory system. Work sessions should combine resistance, speed and rest. For example, working periods can vary from 30-60 seconds with similar rest periods. The number of different stations could be as high as 15 stations of differing exercises.(2)

Preparations for the Soccer Season

Physical Fitness Assessment

1. Physical Exams and Screening

2. Physical Fitness Tests

 

a. Cardiorespiratory endurance

 

1. Heart rate recovery test
2. Step test
3. Running
4. Walking

 

b. Body Composition

 

1. Anthropometric test
2. Skinfold test

 

c. Muscle Power and Strength

d. Flexibility

 

Prevention of Injuries

 

a. Proper Preparation of teens and players
b. Equal Competition
c. Proper rules and refereeing
d. Proper sequence of warm-ups, stretching, and exercises

 

Protective Gear in Soccer

 

1. Cleats
2. Shin Guards
3. Mouth protector (for persons with orthodontics)
4. Goalies outfit (elbows, knees, and hip cushion)
5. Taping (when necessary)

 

Water and Electrolyte Balance

Water is the most important and critical nutrient to the survival and well being of a person. One can survive without intake of other nutrients for days, weeks, and even months but one cannot survive without water for more than a few days. In a 70 Kg person, the water content is about 40 liters (i.e. 60% of body weight). Most of the water (25 liters) is inside cells of the body and about 15 liters lie outside the cells. The blood volume is about 5 liters and the maintenance of this volume is critical to the survival of the person. For example, daily fluid intake can vary from 1-7 liters, while the blood volume must remain constant. Excess fluid intake can easily be regulated; however, a problem. arises when fluid intake is below one liter per day and blood volume starts to become lower than 5 liters (for example about volume of 4 liters and below can cause death). Under sedentary conditions skin and kidney (i.e. urine output) are the most important regulators of body water. Under the conditions of hot weather and exercises (despite fluid intake in many cases, the skin (sweating) becomes the only important regulator of body water as well as the body temperature. The daily loss of water in a heavy, prolonged exercise (3 hours marathon) can increase from 0.1 to 5 liters.(6)

Sweating is absolutely necessary in order to maintain constant body temperature. The sweat rate usually corresponds to increases in energy expenditure by the athlete. Trained athletes have a more sensitive sweating system than non-athletes due to adaptation by the repetitive exercises. Of the 5 liters of H2O, a marathon runner’s losses (despite fluid intake in many cases) represent 12% of body water and 8% of body weight. Anything above 2% weight loss due to exercise induces severe demands on the thermoregulatory and cardiovascular systems.

All of the energy expenditure during exercise ends up as heat. Therefore, body temperature will rise rapidly during exercise if cooling due to sweating is not functioning. The prolonged increase in body temperature will eventually cause serious damage to the thermoregulatory system, which can result in serious damage to the brain — the most sensitive organ. Thirst, unfortunately, is not a reliable indicator during exercise (i.e. under any stressful conditions). Therefore, athletes should drink water not just to quench their thirst, but as part of their exercise regime. Figures 3 and 4 represent a hypothetical daily water output and water intake for persons who are: sedentary, a marathon running for 3 hours, or soccer players (90-100 minutes). The numbers are rough estimates, and for illustration purpose only. The most scientific way to determine how much water intake ought to be is to weigh the player before and during the game. The loss of weight due to water loss should be adjusted by drinking the same amount of water. Remember, it is better to drink more than less water.

Children utilize a greater metabolic energy and thus produce more heat than adults to perform the same task. Fortunately, children dissipate heat better than adults due to a larger surface area to mass ratio than adults. However, when ambient temperature is hot and humid, the dissipation of heat is inhibited and thus children maybe at a greater risk than adults during exercise.

Electrolytes such as Na+, K+, Cl-, Ca2 and Mg2+ are the most important ions and their amount in the cell and the blood is critical in maintaining normal body function. As we sweat more during exercise, the amount of these ions in the sweat is less than that of the blood. In other words, the body is losing more water than ions. Under heavy exercise conditions, the body loses about 5-7 grams sodium chloride. However, there is a minimal loss of K+ and Mg2+. Under conditions of continued exercise (up to 80-90 minutes) there is a need to replenish water continuously, but not salt. If there is heavy exercise beyond the 80-90 minutes, salt replenishment is appropriate. The use of salt tablets during the early phase of exercise (in most cases of soccer) is detrimental to the body. The body fluid has a higher salt concentration after exercise than before; therefore, the body needs pure water to bring the blood composition back to normal levels.(6)(2)

Heat Related Illnesses

Heat Cramps

They are similar to other muscle cramps, which may be due to: sudden blows; over exercise; lack of blood supply, etc.

 

Cause: Reduced blood flow to the muscle due to: loss of water, prolonged loss of minerals, etc.

Symptoms: Spasmodic tonic contraction of a given muscle.

Onset: Gradual or sudden.

Danger: None if treated. Heat cramps could lead to termination of that particular exercise for a few days.

Prevention: Proper physical fitness, proper warm-ups and stretching exercises prior to the activity and temporary termination of activity.

Treatment: Termination of activity. Stretching, rest and ice treatment necessary.

 

Heat Exhaustion

 

Cause: Loss of water.

Symptoms: Tiredness, weakness, malaise, and progressively weaker.

Onset: Gradual and over several days.

Danger: The player may go into shock because of reduced blood volume This rarely happens, however, as it is not an emergency condition.

Prevention: Proper physical fitness and proper hydration before and during the exercise and termination of activity.

Treatment: Cooling, drink water, and later drinking large amounts of mineral rich fluid such as fruit and vegetable juices.

 

Heat Stroke

Brain cells in the hypothalamus maintain body temperature close to 98.6oF. These cells respond to the blood temperature that passes through them. The cells regulate the skin by sending signals to release skin vasodilator in order to increase sweating. When rectal temperatures reach 41oC – 43oC, unconsciousness may develop; if that happens, the mortality rate ranges from 50-70%. Heat stroke is the second cause of death among athletes.

 

Cause: Loss of water and sudden uncontrolled rise in body temperature due to the failure of the thermoregulatory center in the brain.

Symptoms: It is a Medical Emergency. May lead to death or irreversible damage. Person shows behavioral or mental status changes during heat stress. These symptoms include: sense of impending doom, headache, dizziness, confusion and weakness. Symptoms that could lead to heat stroke are:

 

a. high temperature and high humidity
b. high rectal temperature
c. hot dry skin
d. cardiorespiratory and central nervous system disturbances
e. clouded consciousness and finally collapse

 

Onset: Sudden

Danger: Brain damage and death is imminent if not treated quickly.

Prevention: Proper physical fitness and proper hydration before and during the exercise and termination of activity.

Treatment

 

1. Call for an ambulance.
2. Remove clothes and cool with ice and cold water on the body.
3. Monitor vital signs. (i.e. breathing, heart beat, pupil size).
4. Massage extremities to promote cooling.
5. Once the body temperature cools and the person is quite alert, remove from cold environment to prevent hypothermia.(3)

 

In the hospital they may perform the following:

 

1. Administer I.V. fluid (1400 ml for first hour).
2. Monitor urinary output – Mannitol may be given to promote urination.
3. Digitalis may be considered for heart failure.
4. Isoproterenol administration to increase cardia output (if needed).
5. Oxygen may be given.
6. Other procedures as necessary may be used.
7. Continue to monitor kidney and brain functions.

 

Adaptation of Endurance Training

Endurance training connotes a process of adaptive changes to achieve the strength, power and cardiorespiratory capacity to complete the specific physical task. Endurance training requires several months of rhythmic and continued exercise that results in an increase in the body’s number of capillaries, maximal oxygen uptake, stroke volume, and enzymes. Moreover, endurance training increases the sectional size of slow type fibers and there is an actual conversion of fast type fibers (Type 11B.) to slow (Type 11A.). The Type 11B. fibers are the fast fibers, and are capable of lasting longer than the type 11A. fibers. Therefore, there are major underlying biochemical changes in the various organs and cells involved in the physical activity that provides the needed energy, strength and power to carry out the task. Soccer requires a combination of slow and fast fibers because soccer playing is a combination of quick actions lasting less than 1-2 minutes and a prolonged activities which can last 5-10 minutes.

Athletic physical conditioning has become a very serious and scientific endeavor. In the past 20 years, there has been an increase in our understanding of the physiology and biochemistry of exercise. There has also been an increase in interest in the mechanism of how exercise induces physiological and biochemical adaptation at the cellular and organismic level and how this accounts for the improved performance of athletes in a given sport.(1)

Endurance in sports means the ability of the person to perform a specific prolonged exercise or work to achieve a reasonable task without adverse reactions such as fatigue, exhaustion, and injury. Endurance can mean different things for different tasks (i.e. sport activity), as each task may involved unique muscle groups and skill levels. Therefore, there are several components of endurance that develop differentially during endurance repetitive training for the specific sport. The components of endurance are: muscle strength and power, the cardiovasculatory system, and the respiratory system. The cardio-respiratory endurance is needed with varying intensities in all sports. However, strength and power can vary in magnitude from muscle to muscle. Therefore, local endurance is quite important for a given sport. During endurance training of repetitive exercise for several months, the muscles adapt to generate force and to maintain a supply of energy. The key factor in endurance training is the exertion of physical stress with certain frequency and for lengths of time. This chronic muscular activity stimulates growth of the muscle as well as the development of endurance in terms of oxygen delivery, energy production, and permanent metabolic and structural changes. Therefore, endurance training in this context is a low-level, prolonged-intensity aerobic training exercise where the system can utilize oxygen as the initial trigger of energy source. The first general aspect of endurance adaptation is the adaptation of the cardiovascular/respiratory system to accommodate the increased frequent demand for oxygen uptake and delivery.

Cardiovascular – Respiratory Adaptation

Rhythmic and continued exercise requires a greater use of oxygen at the muscle site. Therefore, the routes of uptake and transport of oxygen from the air to muscle tissues must adapt to the increased rate of delivery and extraction. A measurement of cardiorespiratory endurance is the VO2 max. VO2 max is the maximal oxygen uptake during the maximal exercise, and it differs from person to person. In order to compare exercise-related data from person to person, the data is expressed relative to a specific level of intensity of exercise and represented as expressed as a percent of VO2 max. To illustrate its importance, endurance training can change the VO2 max by as much as 20%. This is the first indication that true structural and biochemical changes must occur in order to metabolize the increased oxygen uptake. The first apparent result of an exercise is the immediate increase in heart rate. The resting rate is 80 beats per minute; however, during exercise the heart rate can go as high as 190 beats per minutes. After several months of endurance training, heart rates can go as low as 40 beats per min. This reflects several factors of adaptation to exercise among them being the autonomic nervous system. However, the one aspect related directly to the heart rate is the fact that despite the lowered heart rate, the heart provides a greater cardiac output because the stroke column increases by as much as 80%. In a highly trained athlete, the refilling is more complete. More importantly, the left ventricle strength and power is dramatically increased. The left ventricle undergoes hypertrophy with endurance training, which means the actual heart muscle mass and volume are increased. Heart size is greater in endurance trained athletes by as much as 25%, as compared to a sedentary person. Moreover, the contraction of contractile proteins are increased and the composition of the protein changed. Also, oxygen delivery of the blood supply to the heart is improved because the number and size of capillaries per cross-sensational areas of muscle increases by as much 50% due to endurance training. Endurance training also improves (by as much as 80%) the muscle content of myoglobin. Myoglobin carries oxygen within the muscle tissue. These dramatic biochemical adaptations in the oxygen delivery system parallels those of the heart and thus complements the entire scope of the biochemical adaptation for a better performance by the trained athlete.(2)

Blood Volume and Composition

There are three major changes in the blood due to endurance training: (1) increased blood volume; (2) increased hematocrit (i.e. increase in the total number of red blood cells (RBC); and (3) decrease in viscosity. The increased blood volume is as high as 20%. However, the increase in RBC is less pronounced and as a consequence the viscosity of the blood decreases. The increase in blood volume is the key important factor for an endurance trained athlete. The increased blood volume enhances O2 delivery as well as enhancing microcirculation. The increase in microcirculation is even more pronounced due to the blood’s reduced viscosity. A trained athlete also has another advantage in greater capacity to clear lactate from the muscle and utilizing lactate as an energy substrate. Thus, the level of blood lactate in a trained athlete is lower than in a sedentary person. This phenomenon is referred to as a lactate shift. A trained athlete therefore has a greater endurance with less fatigue and cramps due to decreased levels of blood lactate.

Common Injuries Encountered in the Sport of Soccer

The physiological principles of tissue damage and tissue healing are essentially the same for all sports. What makes each sport somewhat unique in terms of the injuries encountered is the specific sport activities which lead to specific mechanisms of injury. The soccer skills involved with passing and dribbling, kicking, ball control, heading, tackling and goal keeping all, when combined with the principles of force, gravity, ground contact, and torque, can lead to injuries.

Unfortunately and wrongly, our youngest athletes (such as youth soccer players) receive the least sports medicine coverage. Therefore, injury recognition and evaluation becomes the premise of the coach or parent who may have little or no preparation for the task.

In an attempt to simplify the evaluation procedures, the most basic acronym, HOPS, should be employed. HOPS stands for history, observation, palpation and strength/sensation. This primitive evaluation system may be utilized with any type of injury.

A good preparticipation physical examination is mandatory. This provides the benchmark from which deviations from the norm may be measured. A good preparticipation physical should minimally include a medical history, height and weight check, visual acuity check or screen, orthopedic or joint evaluation and visceral examination. Physicians specializing in sports medicine are the best sources for these physical exams.

Observation begins the first time one sees the injured athlete. Is he/she conscious, does the athlete walk with an antalgic gait, does the athlete hold any body part as a protective manner, and is the athlete visibly exhibiting pain? These are all important observational factors. Also, if one is dealing with an extremity injury, the evaluator should visibly compare that limb to the contralateral or uninjured limb.

Palpation involves touching and moving the injured body part. If pain is diffuse, palpation may be of limited value. However, if the pain is specific or point tender, then active, passive and resitive motion will assist the evaluator in localizing the injury site or injured structure.

Strength/sensation is the final aspect of the field evaluation. Again, if dealing with an extremity injury, one has the luxury of being able to compare strength and sensation of the injured limb to that of the uninjured.

Common injuries encountered in the sport of soccer include:

  •  

    Sprains: A sprain represents damage to a ligament. Common sprain sites include the ankle, knee and wrist.

  •  

    Strains: A strain represents damage to a musculotendinous unit. Common strain sites encountered in soccer include the gastrocnemius, quadriceps, hamstring, low back and shoulder.

  •  

    Fractures: Common fracture sites include the fingers, tibia, fibula, radius and ulna. These fractures are usually resultant from falls. The only method of positive fracture diagnosis is X-ray.

  •  

    Dislocations: Dislocation sites commonly encountered may include fingers, should and elbow. The most common mechanism of injury resulting in a dislocation is the fall on the outstretched hand or arm.

  •  

    Contusions: Contusions are resultant from contact with the ball, with other players, or with the ground.

  •  

    Concussions

 

When does an injury need to be referred to a physician? Although this is a difficult question to answer, the following guidelines will assist the layman in making the decision:

 

1. Suspicions of a fracture
2. Suspicions of a concussion
3. An injury in which the pain cannot be controlled with conservative measures
4. A laceration that may require sutures
5. Any suspicion of internal injury

 

Additionally, any time the layman is unsure of his/her evaluation, the athlete should be referred to a physician.

Conservative Care of Acute Injuries

The acronym PRICE represents a form of conservation care for acute injuries.

“P” stands for protection. An ankle injury can be protected by placing the athlete on crutches non-weight bearing.

“R” stands for rest. Rest means not using the injury body part and allowing it to heal properly.

“I” stands for ice. Ice or cold is utilized in cryotherapy. The use of ice results in a greater chance of tissue survival, reduces degradation of healthy tissue, induces vasoconstriction which prevents further swelling and loss of range of motion and enhances early mobilization. Ice also acts as a topical anesthetic.

“C” stands for compression. Specific compression when applied to an extremity injury may prevent swelling and the accompanying loss of range of motion.

“E” stands for elevation. By elevating an extremity injury, once reduces effusion and dependent bleeding. Again, this reduces swelling and loss of range of motion, both of which tend to protract injury recovery time.

Remember, the whole idea behind the science of sports medicine is to provide the best possible environment for healing to occur.

Summary

Youth and age group soccer can be an extremely positive experiences for the young athlete. Skill development, coordination, socialization skills, and cooperation are all positive results of a healthy youth and age group soccer program.

In order to assure a healthy program, one must insist that sports medicine considerations such as preparticipation physical exams, proper conditioning, conservative injury care and warm- up and cool down periods are observed as well as adequate hydration and rehydration.

2013-11-27T19:18:19-06:00February 11th, 2008|Sports Coaching, Sports Exercise Science, Sports Management, Sports Studies and Sports Psychology|Comments Off on Sports Medicine for Youth Soccer

NCAA Athletes and Facebook

ABSTRACT
The use of Facebook and other social networks by a majority of National Collegiate Athletic Association (NCAA) athletes has come under intense scrutiny from college officials in recent months. The current level of monitoring by athletic departments ranges from mere advisories as to what athletes should post, to a complete ban on the use of any social networks (Brady & Libit, 2007). The findings of this study of 522 NCAA athletes representing Division I, II, and III indicate that NCAA II athletes project the least positive image on their Facebooks. Female athletes in general reported projecting a better image, while male athletes expressed the greatest resistance to being monitored.

NCAA ATHLETES AND FACEBOOK
The use of Facebook and other social networks, accessed regularly by the majority of National Collegiate Athletic Association (NCAA) athletes has come under intense scrutiny from college officials in recent months. The scrutiny has been prompted by athletic department administrators and coaches as they have become increasingly concerned about both the university image projected on Facebook and the well-being of the student-athlete. The current level of monitoring by athletic departments ranges from advisories as to what athletes should post, such as the ultimatums on type of use issued by the University of Kentucky and Florida State University, to a complete ban on the use of Facebook by athletes, as seen at Loyola University (Brady & Libit, 2007). For purposes of this article, it should be noted that the social network Facebook is a word frequently used by university administrators and athletic directors as an all-encompassing term that describes not only Facebook, but MySpace and other forums such as SportsGist.com, MyStack.com, and Badjocks.com. Such will be the case in this paper, as Facebook is the most prevalent social network utilized by college students today.

The focus of this article is to address the image and monitoring concerns associated with Facebook usage among college athletes. The secondary issue examined is the host institution’s concern over the image projected on the athlete’s social network accounts. Additionally, the battle between the university monitoring of student-athletes’ Facebook accounts and First Amendment privileges related to freedom of speech and expression will be addressed.
When a student creates a Facebook profile, he or she has the freedom to share uncensored photos and personal information with friends and other network members among the 40 million users (Lemeul, 2006). Facebook has evolved from a single-university communication tool into a public domain, accessible to anyone with a Facebook account. Facebook has certainly become a vehicle for self-expression and communication among students.

The NCAA has not taken a formal stand on how much a university can monitor or restrict accounts. Instead, the NCAA has left it up to the host institution to determine its own Facebook policies at this time. Universities have traditionally supported the 1972 Supreme Court ruling in Healy v. James wherein the Court found that state colleges and universities are not enclaves immune from the sweep of the First Amendment (Lukianoff & Creely, 2007). However, the recent trend is for universities to make specific policy statements related to expression on Facebook. The growing trend in athletic departments, as well, is to monitor the social network accounts of athletes. For example, Roper (2007) noted that the entire Catholic University lacrosse team was suspended from school after posting hazing photographs of new athletes on their personal Facebook accounts. Four female soccer players at San Diego State University were penalized for alcohol- and partying-related pictures they posted (Schrotenboer, 2006). Two athletes at the University of Colorado were issued tickets for harassment by the campus police for racially offensive messages they posted (Brady & Libit, 2006). In May of 2006, two athletes were dismissed from the Louisiana State University swim team for posting degrading comments about the swim coaches (Brady & Libit, 2006). Recent photos on Badjocks.com resulted in an increased scrutiny of athletes from Elon University and Northwestern University, as these postings projected an embarrassing image for the respective universities (Anderson, 2007). Laing Kennedy, the athletic director at Kent State University, made headlines when he forbade student-athletes there from using Facebook (Read & Young, 2006). Mr. Kennedy has recently revised his statement and simply requires all Kent State University athletes to keep their profiles private (Read & Young, 2006). Even though athletes seem to be at risk, Schrotenboer (2006) noted that coaches may be the ones who have even more to lose, as damaging pictures and statements on Facebook can hurt recruiting, team morale, and image.

Excessive access to information can put the athlete at risk by giving gamblers personal information about the injuries of marquee players, who are the most likely to be approached with point-shaving opportunities. There is also concern that a Facebook “friend” may turn out to be a professional gambler or agent and thus compromise an athlete’s eligibility by his or her affiliation with that person (Strickland, 2006). Agents or bookies may pose as a friend on a social networking site and solicit illegal contact with a student. Some students use Facebook as an alternative to a paper diary. However, these students need to be aware that any material posted on Facebook may be retained by Google’s online cache, even after the material is deleted, according to Tracy Mitrano, director of information-technology policy at Cornell University (Read & Young, 2006). A cache allows material to be viewed through a search engine, even after deletion from sites such as Facebook (Mitrano, 2006). According to Mitrano, this online cache proved deadly for one student who applied for a full-time position after graduation. Even with experience and a high grade point average, the applicant was refused employment when the employer found an inappropriate remark made by the applicant in an on-line cache. Not only can students impair themselves professionally with questionable pictures, but they can also incite legal action with libelous comments about professors or fellow classmates (Mitrano, 2006).

Ironically, at the same time many athletic departments are restricting the use of social networks, some tout the benefits; some claim that these networks may reduce the new-roommate anxiety experienced by incoming freshmen, open doors for conversation with their intended roommates even before arriving to campus, and aid in the completion of academic assignments (Farrell, 2006). Facebook can also aid students in meeting other people who share the same interests or dormitory. With the instant opening of an account, Facebook lists all of the people in a network who have a common interest. Students can also specify the networks to which they belong and even join networks based on characteristics such as metropolitan location or where they graduated from high school (Zuckerberg, 2006). Barbara Walker, senior associate athletic director at Wake Forest University, touted the positive attributes of Facebook when used innocently and suggested that administrators be careful about restrictive policies (Doughtery, 2007).

Politicians have even created accounts on social networking sites such as Facebook to spark interest among college-age voters (Vascellaro, 2006). This can be advantageous if the politician garners overwhelming support and positive comments from young voters. However, the political strategy of creating a Facebook profile can have the same negative consequences as for an athlete, when negative comments are posted on the profile of a politician.
While there are numerous benefits to creating a Facebook profile, there are concerns, not only about NCAA athletes but about the general student body, as well as in regard to projecting negative images (Read & Young, 2006). According to Pablo Malavenda, associate dean of students at Purdue University at West Lafayette, some students have little or no concern about the image they project to the public through Facebook (Read & Young, 2006). Malavenda noted that students tend to embellish profiles with exaggerated pictures of rebellion that most commonly involve underage alcohol consumption. Facebook furthermore has been used to taunt and physically threaten opponents in high school sports (Doughtery, 2007).

While student-athletes are to be treated as general college students, they are frequently subject to additional behavioral guidelines as a condition for scholarship renewal. These guidelines are presented in the form of a code of conduct, which usually requires that athletes represent the university in a positive manner. Ian McCaw, the director of athletics at Baylor University, issued a formal memo to all student-athletes and student trainers that explained that material which other students often post on Facebook pages may be inappropriate for student-athletes’ pages (Brady & Libit, 2006). Wake Forest’s athletic department instructs athletes that no comments or pictures administrators deem inappropriate may be used on Facebook (Doughtery, 2007). Furthermore, Kermit L. Hall, president at the University of Albany in New York, says that students give up some freedom and become subject to regulations when they join an athletic team.

There is concern about the impact that social networking sites might have on grade point averages. One UCLA student realized that he was spending too much time on Facebook when his grade point average dropped a point and a half (Reed & Riley, 2005). One concerned parent of a high school student noticed that his daughter’s involvement with Facebook made two hours’ worth of academic work take eight hours to complete (Duffy & August, 2006). This is likely due to the distraction that social networking sites create. Student-athletes already must be more effective time managers than the average student. The student-athlete cannot afford to spend eight hours on a two-hour assignment because of time lost to Facebook. Logistically speaking, student-athletes have little time in their schedules for the abyss of Facebook, without incurring academic consequences.

Student-athletes are in a different situation than typical students, as they are much more visible in the public domain representing the university. Athletic departments, at their core, operate like businesses (Strickland, 2006). Athletes are the products that create the funds for the businesses. Coaches are always trying to market the athletic department and the university to prospective recruits and donors. Prospective recruits can often find mostly uncensored information about their future teammates on Facebook. Pablo Malavenda, the associate dean of students at Purdue, knows of several instances when athletes backed out of oral commitments because of what their future teammates had posted on Facebook (Read & Young, 2006). This could have devastating consequences for athletic programs. When recruiting high school athletes, college coaches spend time, energy, and money in order to sell the program to the athlete. Prospective athletes may become dissatisfied with a program after seeing Facebook pictures of their future teammates engaging in drinking, drug use, or other undesirable activities. Even though the NCAA has not developed specific policies for athletes about Facebook and other social networking sites, such sites are becoming an area of concern; the issue was on the agenda at an August 2006 NCAA meeting.
While the use of social networking sites has garnered significant media attention, research documenting student usage and image projected is sparse. The research into the motivations for social network usage by students comprises a study conducted by Michigan State University (Ellison, Steinfield, & Lampe, 2006). This study gathered data on Facebook usage through the administering of a survey to the entire student body (Ellison, Steinfield, & Lampe, 2006). One key finding from this study was that the amount of time spent on the Internet did not differ between those who were not members of Facebook versus those who were members (Ellison, Steinfield, & Lampe, 2006). Grade point averages also did not differ significantly between Facebook members and non-members (Ellison, Steinfield, & Lampe, 2006). While these results are revealing, one must remember that they are only representative of the Michigan State University student body, not of all college students. Additional research is needed on the habits of college students using social networking sites. Because of the high-visibility situations facing NCAA student-athletes, their use of social networking sites needs extensive study. As athletic departments increasingly monitor their athletes’ accounts, knowledge of usage, attitudes, and motives is of growing importance.

The research questions pursued in the present study were related to examining frequency of use, image projected, and attitude toward being monitored on Facebook, by gender and NCAA classification. The study examined NCAA athletes’ (a) responses related to perceived personal image projected; (b) responses related to the athletic department image projected by individual student-athletes on Facebook; and (c) desired level of athletic department monitoring of social network accounts. The problem of this study was to generate an updated, cross-sectional view of athletes’ stances on issues of image and responsibility related to social networks.

METHODOLOGY
This study examined college athletes’ usage of and attitudes toward Facebook. To obtain a representative sample of NCAA student-athletes, the subject pool was selected from six different NCAA Division I, II, and III universities.

The data was collected from athletes at each of the schools, with assurance of anonymity to the participants. Athletes completed the survey privately. Athletes were told that the word Facebook should be taken to mean all social networks including MySpace and Badjocks.com. The total number of subjects responding was 522. This consisted of 148 NCAA Division I athletes representing the Southeastern Conference, 146 NCAA Division II athletes from the Gulf South Conference and the Northern Sun Intercollegiate Athletic Conference, and 126 NCAA Division III athletes from the Southern Independent Athletic Conference. There were 308 male and 214 female respondents.

The data collected were analyzed using a Kruskal-Wallis test (Green & Salkind, 2003) to determine if the population mean responses differed based on gender or categorization as NCAA I, II, or III level. The respondents were asked to answer written survey questions about (a) their personal image projected on Facebook, (b) the image of their athletic department based on their personal Facebook account, and (c) the level of athletic department monitoring of Facebook they desired. The 0.05 level of confidence was set as the significance level.
The questionnaire utilized for this study was modeled after the Carnegie MellonUniversity survey of freshmen reported in 2006 (Tabreez & Pashley). Slight adaptations of the questionnaire were made to more appropriately reflect the present athlete-dominated subject pool.

RESULTS
Looking at the responses of the male NCAA athletes as contrasted to the female NCAA athletes, there was a significant difference (at the 0.05 level of confidence) for all items examined in this study, when using the Kruskal-Wallis test of significance. As seen in Table 1, these items included athlete’s perception of personal image projected on Facebook accounts, athlete’s athletic department image as influenced by personal Facebook accounts, and athlete’s recommended level of athletic department monitoring.

Table 1

NCAA Athletes Facebook Image and Recommended Level of Monitoring (N=522)
________________________________________________________________________
Gender difference NCAA I, II, III
Asymp. Sig. χ2 Asymp. Sig. χ2
________________________________________________________________________
Personal image projected .032 4.612* .045 6.221*
Athletic department image .018 5.618* .479 1.472
Monitoring level recommended .022 5.281* .133 4.036
________________________________________________________________________
Kruskal-Wallis test p* < .05.

Also presented in Table 1, NCAA classification was associated with significant differences in athlete’s personal image presented on Facebook. No significant difference was observed, however, in responses related to athletic department image projected or recommended level of Facebook monitoring, when examined by NCAA classification.

Table 2
NCAA Athletes Self-Report of Personal Image on Facebook (N=522)
_______________________________________________________________________
very positive positive neutral negative very negative
Female athletes 26.3% 58.8% 14.9% 0.9% 0.0%
Male athletes 22.3% 42.7% 30.1% 3.9% 1.0%
NCAA I athletes 14.9% 48.9% 34.0% 0.0% 0.0%
NCAA II athletes 23.8% 48.4% 23.8% 3.2% 0.8%
NCAA III athletes 38.5% 42.3% 11.5% 7.7% 0.0%

_______________________________________________________________________
female n=214, male n=308, NCAA I n=148, NCAA II n=146, NCAA III n=126

When examining aspects of personal image presented on Facebook, some significant differences were found. As Table 2 shows, 85.1% of the female athletes, as contrasted to 65% of the male athletes, leaned toward a positive image projection on Facebook. No female athletes appraised their accounts as projecting a very negative image. Also, 74.6% of the female athletes reported that their accounts projected a positive athletic department image, as contrasted to 56.1% of male athletes (Table 3). The male athletes were more likely than the female athletes to recommend “definitely” no athletic department monitoring, or monitoring on a limited basis. Additionally, as seen in Table 4, 66.8% of the male athletes recommended no monitoring or limited monitoring, as contrasted to 58.3% of female athletes.

Table 3
NCAA Athletes Self-Report of Athletic Department Image on Facebook (N=522)
_______________________________________________________________________
very positive positive neutral negative very negative
Female athletes 24.1% 50.5% 24.5% 0.0% 0.9%
 

Male athletes 16.2% 42.9% 37.5% 2.9% 0.5%

 

NCAA I athletes 21.7% 30.4% 45.7% 0.0% 2.2%

 

NCAA II athletes 17.8% 48.2% 31.2% 2.4% 0.4%

 

NCAA III athletes 24.0% 48.0% 28.0% 0.0% 0.0%

_____________________________________________________________________
female n=214, male n=308, NCAA I n=148, NCAA II n=146, NCAA III n=126

Table 4
NCAA Athletes Recommended Level of Facebook Monitoring by Athletic Department (N=522)
________________________________________________________________________
strongly limited definitely
monitor monitor unsure monitor not monitor
Female athletes 1.8% 19.5% 19.5% 38.1% 21.2%
 

Male athletes 4.4% 9.8% 19.0% 30.7% 36.1%

 

NCAA I athletes 4.3% 13.0% 34.8% 26.1% 21.7%

 

NCAA II athletes 3.2% 14.1% 17.7% 31.9% 33.1%

 

NCAA III athletes 3.8% 3.8% 7.7% 57.7% 26.9%

_______________________________________________________________________
female n=214, male n=308, NCAA I n=148, NCAA II n=146, NCAA III n=126

Among NCAA Division I athletes, no respondents indicated a perception of any negative image of their personal accounts, whereas NCAA Division II and III respondents did report negative images, at rates of 4% and 7.7%, respectively. NCAA Division I athletes were most likely to say their accounts projected a neutral image, with 34.0% choosing this response. Also, as noted in Table 2, the NCAA Division III athletes had the highest percentage for positive personal image, 80.8%. They were followed by the NCAA Division II athletes, with 72.1%, and NCAA Division I athletes, with 63.8%.

DISCUSSION
The first Harvard University Facebook, distributed annually, was initially a simple, pictorial directory of all incoming freshmen. Along with pictures, the Harvard Facebook also included the majors and hometowns of freshman students. In 2005, Harvard student Mark Zuckerberg decided to launch an online version of the Facebook (Hoover’s, 2006). It started as a simple communication tool; then, Zuckerberg decided to extend online service to the entire Harvard student body and several other universities. It was after this point that Facebook exploded into the communication vehicle currently used by over two-thirds of American college students (Schrotenboer, 2006). Unlike the original Harvard Facebook, it has become a way for students to communicate and express their individuality, creating concern in collegiate athletic departments, particularly when individuality projects a negative self-image, team image, or university image. Facebook has become a medium through which student-athletes sometimes offer less-than-desirable information to the public.

Pop culture is created when (as on Facebook) users are allowed to share information with others exactly as they wish, uncensored, without regard for image and without fear of reprisal. The current trend, however, is for athletic departments and universities to restrict this free flow of expression, even, in a growing number of cases, to ban totally athletes’ use of social networks. Currently, the courts have not charged colleges and universities with violation of the First Amendment related to censoring social networks or restricting freedom of speech in student accounts. The issue will be interesting to follow.

As the present study found, female athletes generally claim to project a more positive image on social networks than their male counterparts. This finding alone might generate increased athletic department monitoring of male athletes’ Facebook accounts. Male athletes, furthermore, expressed more resistance to athletic department monitoring than did female athletes. This is another indication of the need to monitor male athletes’ accounts, since males seem to seek relatively more opportunities to exhibit a less-than-desirable image on Facebook.

The findings of this study for the various NCAA classifications suggest that NCAA II athletes are least educated about or least aware of the implications of the image issue associated with public accounts. This might have been expected, as these schools generally have less staff to work with athletes on image issues. The greater perception of a positive image projected on Facebook reported by NCAA Division III athletes is perplexing and deserves both accolades and further study. With the relative visibility of NCAA Division I athletics, it is to be expected that these athletes’ accounts would project a positive image, and they did, according to the athletes.

After investigating the issue of image and monitoring of college athletes’ personal Facebook accounts, it appears that several related matters need investigation. These are (a) whom athletes allow to access their accounts, (b) the privacy levels or protection levels athletes use with their accounts, (c) the motives of athletes for the images projected, (d) the steps athletic departments take to educate student-athletes and monitor their accounts, and (e) female athletes’ apparently greater concern about image on Facebook accounts, as contrasted to their male counterparts. Lastly, with the growing athletics-related abuse of Facebook in high schools, as seen recently at Medfield High School in Massachusetts and McCutcheon High School in Louisiana (Doughtery, 2007), study of high school policy is also merited.

REFERENCES
Anderson, M. (2007, May 4). UMD athletes won’t be “poking” anymore. MinnesotaDuluth Daily. Retrieved September 20, 2007, from http://www.mndaily.com

Brady, E., & Libit, D. (2006, March 8). Alarms sound over athletes’ Facebook time. USA Today. Retrieved September 17, 2007, from http://www.usatoday.com

Delaney, K., Buckman, R., & Guth, R. (2006, September 21). Social Whirl: Facebook,
riding a web trend, flirts with a big-money deal; as big companies pursue
networking sites, start-up is in talks with Yahoo; youthful audience is fickle. The Wall Street Journal. Retrieved September 29, 2006, from the ProQuest database.

Duffy, M., & August, L. (2006, March 27). A Dad’s encounter with the vortex of
Facebook. Time. Retrieved September 29, 2006, from the Academic Search
Premier database.

Doughtery, N. (2007, August/September). Faceless new world. Athletic Management,
40–48.

Ellison, N., Steinfield, C., & Lampe, C. (2006). Spatially bounded online social
network and social capital: The role of Facebook. Retrieved November 10,
2006, from Michigan State University, Department of Telecommunication, Information Studies, and Media Web site: http://msu.edu/~nellison/Facebook_ICA_2006.pdf

Farrell, E. (2006, September 1). Judging roommates by their Facebook cover.
Chronicle of Higher Education, 53(2), 66–66. Retrieved October 6, 2006, from
the Academic Search Premier database.

Green, S., & Salkind, N. (2003). Using SPSS for Windows and Macintosh (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

Hoover’s. (2006). Facebook, Inc. Retrieved September 29, 2006, from the ProQuest database.

Lemeul, J. (2006, September 1). Why I registered on Facebook. Chronicle of Higher Education, 53(2), 113–113. Retrieved October 6, 2006, from the Academic Search Premier database.

Lukianoff, G., & Creeley, W. (2007, February 21). Facing off over Facebook: Who’s looking at you, kid? The Boston Phoenix, 1–11.

Mitrano, T. (2006, April). Thoughts on Facebook. Retrieved October 6, 2006, from
Cornell University, Office of Information Technologies Web site: http://www.cit.cornell.edu/policy/memos/facebook.html

National Collegiate Athletic Association. (2006, August 3). President’s Council
Agenda. Retrieved October 6, 2006, from: http://www1.ncaa.org/membership/governance/division_III/presidents_council/2006/August/PC_working_agenda.htm

Praprotnik, T. (2006). Cultural Commercialization. Retrieved November 03, 2006, from
Dartmouth University Web site:
http://thedartmouth.com/2006/11/03/opinion/cultural.html

Read, B., & Young, J. (2006, August 4). Facebook and other social-networking sites
raise questions for administrators. Chronicle of Higher Education, 52(48), 37–37. Retrieved October 6, 2006, from the Academic Search Premier database.

Reed, K., & Riley, C. (2005, July). Thefacebook.com; Social networking without business cards. Retrieved October 27, 2006, from Michigan State University,
Department of Student Life Web site:
www.studentlife.msu.edu/current_students/rso/documents/thefacebook.ppt

Roper, E. (2007). Facebook big brother? Administrators, coaches keep tabs on students’ online activity. The G. W. Hatchet. Retrieved September 18, 2007, from http://www.gwhatchet.com/home/index.cfm

Schweitzer, S. (2005). When students open up—a little too much. Retrieved September
26, 2005, from http://www.boston.com/news/local/new_hampshire/articles/2005/09/26/

Schrotenboer, B. (2006, May 24). College athletes caught in tangled web. The San Diego Union-Tribune. Retrieved September 19, 2007, from http://www.thefire.org/index.php/article/7068.html/print

Strickland, C. (2006, July 17). Facebook forces change in playbook. The Atlanta Journal-Constitution, pp. A1, A15.

Tabreez, G., & Pashley, H. (2006). Student awareness of the privacy implications when using Facebook. Retrieved November 21, 2006, from Carnegie Mellon
University Web site: http://lorrie.cranor.org/courses/fa05/tubzhlp.pdf

Vascellaro, J. (2006, September 21). Campaign 2006 Online; new sites aim to
capitalize on social-networking craze to spark political involvement. The Wall Street Journal. Retrieved September 29, 2006, from the ProQuest database.

Zuckerberg, M. (2006). Facebook: Site tour. Retrieved September 29, 2006, from
http://www.facebook.com/sitetour/

2017-08-07T15:41:16-05:00January 7th, 2008|Contemporary Sports Issues, Sports Management|Comments Off on NCAA Athletes and Facebook

How Do Fans React When Sports Teams Are Named After Corporations?

ABSTRACT
The reaction to Red Bull naming its soccer teams after the corporation and prominently displaying the company logo on team uniforms is a mixed one among media critics and fans. Although many media observers note that trends seem to indicate that more sports teams may be named after corporations, there is still a fine line between what is seen as hip and what is taboo. Grathoff (2006), however, suggests that the idea that Major League Soccer would allow a team to be named after a corporation reinforces the league’s second-class status.

INTRODUCTION
The reaction to Red Bull naming its soccer teams after the corporation and prominently displaying the company logo on team uniforms is a mixed one among media critics and fans.
Travis (2006) criticizes the notion that sports teams should be named after corporate interests and predicts that it may not be long until other franchises are named after alcoholic drinks and other products most fans crave. He comments, “Somehow, as a sports fan, I like to think there’s something about a name that can’t be bought. Even if teams, players and stadiums can all be sold to the highest bidder, the last refuge of the fan should be the team name itself.” In contrast, Lewis (2001) argues that the owner of a franchise has the right to determine how a team should be named and marketed. Similarly, Burn (2006) comments that naming a team after a corporation may likely disturb fans more than merely placing a business name on a stadium. Burn contends that fans like to maintain the illusion that at least the team is not merely a business enterprise (as indicated when the squad is named after a corporation) but is at heart a sports organization. On the other hand, Quirk & Fort (1999) and Zimbalist (1998) correctly point out the need for additional review streams (including economic gains that may result from the naming of a team) that are needed to keep up with the exponentially growing cost of running a professional sports franchise.

Although many media observers note that trends seem to indicate that more sports teams may be named after corporations, there is still a fine line between what is seen as hip and what is taboo. Anderson (2006) and Boswell (2006) describe instances in American sport in which teams were named after corporate interests, including basketball franchises in the 1930s (e.g., the Firestone Non-Skids and the Toledo Red Man Tobaccos), soccer teams in the World War II era (e.g., Bethlehem Steel, the Akron Goodyears, and the St. Louis Central Breweries), semi-professional softball teams in the 1980s (e.g., the Coors Light Silver Bullets), and a soccer team in the 1970s (the New England Lipton Tea Men). For decades stock car racing in the USA has been prominently associated with a naming rights sponsor, first Winston and later Nextel. In a few cases, prominent American sports franchises named after corporations have gradually become accepted by most fans. For example, one of the most famous National Football League teams, the Green Bay Packers, were named after a meatpacking company, while the Detroit Pistons of the National Basketball Association were named after a manufacturer of automotive parts. Hughes (2006) and Grathoff (2006) suggest that a corporate name for a professional sports team may be more likely to be accepted by the public if it connotes an image associated with a sporting endeavor, is similar to names used by other teams (e.g., the Chicago National Basketball Association franchise and the University of South Florida use “Bulls” as their name) and is not seen to be politically incorrect. “Red Bulls” seems to meet these criteria.

On an international scale, there are examples of soccer teams named after corporations (Spangler, 2006). For example, Bayer Leverkusen in Germany is named after the firm that manufactures aspirin, while PSV Eindhoven of Holland is named for Philips Electronics. In that light, it could be argued that there is a tradition of naming soccer organizations after corporate sponsors.

Grathoff (2006), however, suggests that the idea that Major League Soccer would allow a team to be named after a corporation reinforces the league’s second-class status. Grathoff notes how the National Basketball Association, a more established and prosperous league, refused a bid by FedEx Corporation to name the Memphis franchise “The Express,” as well as a request to have a proposed Louisville team play its home games at an area to be called “the KFC Bucket.” Said Paul Swangard of the Warsaw Sports Marketing Center at the University of Oregon (quoted in Grathoff, 2006), “In the American sports landscape, we would have expected to see the Red Bull thing happen in a start-up league or a fledgling league rather than one of the mainstays. The NBA, the NFL, Major League Baseball and the NHL have been very cautious with their approach.”

HISTORY
The Birth and Marketing of Red Bull
Austrian Dieter Mateschitz created Red Bull after visiting Thailand in 1982 and learning that tired drivers in that region consumed large quantities of energy drinks. The top brand in Thailand was a mixture of caffeine, water, sugar and taurine marketed as “Water Buffalo” (referred to locally as Kratindaeng). Mateschitz created his own version of the drink, which he called Red Bull, loosely modeled after that Thai beverage. Shortly thereafter, Red Bull was introduced to Austria, Germany and other European nations. It was first marketed in America in 1997 (Gschwandter, 2004).

Sales of energy drinks like Red Bull and its competitors have increased by 75% since 2005 and totaled more than $3.5 billion in 2006. In 2006 Red Bull sold 2.5 billion cans of the drink worldwide, about 1 million of those in the United States. More than 500 varieties of energy drinks were sold in 2006, and Red Bull is one of the leading brands in the category (Rouvalis, 2006). Estimates suggest that roughly one in every three American teenagers consumed an energy drink in 2006 (Lord, 2007).

Red Bull is known as much for its unique marketing programs as for the highly caffeinated taste of the drink (Hein, 2001), which some marketing experts refer to as liquid Viagra. Van Gelder (2005) suggests that Red Bull is at the leading edge of relatively young companies that combine the best elements of creativity and strategy when building their brands. As a result, he contends, Red Bull will continue to flourish, as long as it emphasizes innovative branding strategies. McCole (2005) describes Red Bull’s branding efforts as “experiential marketing” in which target audiences are exposed to energized special events that create vivid memories. McCole argues that involving stakeholders in live action-sports events can create strong relationships between potential customers and the brand. Similarly, Dolan (2005) describes Red Bull’s promotions efforts as “guerilla marketing” relying on creative special events to bypass traditional advertising in the mass media. Ho (2006) comments that Red Bull is creating a new marketing model by actively owning teams and sports events rather than merely serving as a corporate sponsor. Gschwandter (2004) suggests that Red Bull is marketed using “alpha bees”: individuals who will enthusiastically tell others about a product they love.

Red Bull has often marketed on-site at nightclubs and extreme sports events (such as base jumping and extreme skateboarding), and motor sports events such as BMX motorcycle racing and NASCAR and Formula One automobile racing. Initially, the focus was not to market Red Bull through team sports, but instead to promote individual personalities (Lidz, 2003). Lindstrom (2004) describes Red Bull’s efforts to creatively promote and market the drink to young adults and college students; an example is the company paying people to paint their car in the company colors and place a large replica of a Red Bull can on the roof. As a result, Red Bull is consumed in large quantities on college campuses, either by itself or mixed with liquor.

Typically, Red Bull is only advertised once a target market has matured and buzz has already been created about the brand. For example, most distributors buy the drink directly from the company and sell Red Bull exclusively. According to Ho (2006) and Heinz (2001), Red Bull seeks to align itself with the lifestyle associated with action sports.

Even though it has been criticized by public health officials as being detrimental to human health and even lethal in some cases (Wilde, 2006), a few athletes, including some soccer players, tout the drink’s benefits. MLS forward Taylor Twellman of the New England Revolution endorses the product and said “Drinking Red Bull before training and matches provides me with the needed energy and focus to give me that extra edge on my opponents” (Sells, 2006). In contrast, Zeigler (2006) points out that some public health officials are concerned that the drink may lead to dehydration and that Red Bull seems to be primarily used with alcohol, so people can drink without getting tired.

Red Bull Salzburg
SV Salzburg has a rich history. The club was formed in 1933 when teams associated with the left and right wings of the political spectrum merged. In fact, the selection of violet and white as team colors was intended to suggest the new team was politically neutral (Guenther, 2006). SV Salzburg has traditionally been one of the strongest teams in Austria’s Bundesliga and won the league championship in 1994, 1995, and 1997. In 1994 the team finished as the runner-up in the UEFA Cup.

However, SV Salzburg began encountering financial difficulties around the year 2000, and Red Bull purchased the team in 2005. Robinson (2005) describes how many fans were initially supportive of Red Bull’s purchase of the team, since it would provide needed finances to recruit top-caliber players. But he notes that (fans) soon … recognized that the new management’s purpose was to destroy the old club to establish a Red Bull company club.”
Austria’s premier football association, the Bundesliga, has a history of allowing football club names to help promote private investors (Joyce, 2003). Still, Red Bull took this concept to the extreme, completely rebranding the team and replacing the traditional purple and white uniforms with the red, blue, and yellow colors used to market its drink (Plenderleith, 2007b). Red Bull also referred to the origin of the club based on when the company made the purchase (2005) rather than on the year the team was founded (1933). According to Guenther (2006), “There was a clear intention to sever any ties with the ‘old’ Austria Salzburg. Club sources went on to say that, as far as Red Bull is concerned, there is no history, no tradition” associated with the transformation of SV Salzburg to the new ownership.

When discussing the rationale for changing the color of the team’s uniforms, Red Bull CEO Dieter Mateschitz (cited in Joyce, 2003) referred to fan protests as “kindergarten stuff.” He said, “The Red Bull can’t be violet or else we couldn’t call it Red Bull. Whether you play in purple, blue, or green is irrelevant; the only thing that matters is the team being successful.”

Red Bull also instituted policies that discourage fans from showing the violet and white colors used for many years and prohibit fans from displaying in the stadium banners criticizing the new ownership. Some fans who wore the violet and white colors to Red Bull matches were harassed and assaulted with beer bottles. The end result has been that relationships between the team and many long-standing supporters were significantly damaged. In addition to claims that people who cherished the old traditions were harassed, Red Bull may have offended potential fans by providing a game-day experience that features loud rock music, a disco-style laser light show, a celebrity kick-off with the driver who leads Red Bull’s Formula One team, and fan animators who exhort the crowd to cheer when prompted (Joyce, 2003).

The divided loyalties to old and new ownership have created a group of disaffected fans calling itself “the Campaign for Violet and White” (Violett-Weiss, 2007). Some of the most important goals of this campaign are to incorporate the original team colors of violet and white into the club’s new identity; to make sure that Red Bull refers to the 1933 founding in its marketing and literature; and to improve public relations and dialog between Red Bull and fans of SV Salzburg.

Changing the Name to Red Bull New York
The New York franchise was founded at the creation of Major League Soccer in 1996. Initially, the team was named the New York/New Jersey MetroStars after another corporation, the MetroMedia Entertainment Group. In 1997 the team dropped New Jersey from its name and became known simply as the New York MetroStars.

In March 2006, Red Bull purchased the team for a reported $100 million from the Anschutz Entertainment Group (Bell, 2006). As part of negotiations that led to the purchase, Red Bull lobbied hard for permission from the league to prominently place the logo on the front of the team jersey (Weinbach, 2006). According to Red Bull CEO Dieter Mateschitz, purchasing the MetroStars made sense because it provided an opportunity to market the drink to more than 18 million Americans who play soccer, as well as to an additional 60 million fans who follow the game as spectators. Mateschitz said, “Soccer is just about to make a big breakthrough in the United States media” (Red Bull, 2006). Fatsis (2006) suggests that the investment by Red Bull is one sign that Major League Soccer has a promising future and is poised for economic growth.

The new ownership also acquired a stake in a soccer-only stadium, Red Bull Arena, now being built for the team in Harrison, New Jersey, and opening in 2008 (Thomaselli, 2006). Clark (2006) suggests that buying the club makes sense economically for Red Bull, since it allows them to promote their products using the team as a “walking billboard” in a huge media market. Clark commented that the purchase of the team by Red Bull may likely improve the team’s performance on the pitch, given the owners’ successes in Europe and the amount of capital they will invest in the team. In 2006, Red Bull New York suffered a $14 million loss, perhaps because all the branding and marketing of the energy drink lessened the participation of other corporate sponsors (Plenderleith, 2007).

Several local politicians were upset that the team will be “Red Bull New York,” even though the state of New Jersey is financing the stadium in Hudson County, New Jersey. Brendan Gilfillan, a spokesman for New Jersey Governor John Corzine, opposed dropping New Jersey from the franchise name and stated (Frankston, 2006):

Their new name may be Red Bull New York, but striking New Jersey from their name seems to be a different kind of bull altogether. This is a team that sells its products in New Jersey, draws its fan base from New Jersey, and receives funding from New Jersey.

In addition, New Jersey Senator Frank Lautenberg urged Red Bull to reconsider the decision (The Global Game, 2006). George Zoffinger, president of the New Jersey Sports and Exposition Authority which runs Meadowlands Stadium where the team now plays, said, “It is an insult to us for them to remove the name of the state,” calling the new name a “lack of respect for the state of New Jersey” (Bell, 2006). Meanwhile, Page (2006) opines that removing New Jersey from the team name disrespects the state and its residents.

The potential economic benefits of changing a team name to reflect a franchise’s association with a larger media market (i.e., the change from New Jersey to New York) are illustrated by a similar case involving the Angels Major League Baseball franchise. Nathanson (2007) and Flaccus (2006) describe how owner Arte Moreno changed the name of his team from the “Anaheim Angels” to the “Los Angeles Angels of Anaheim,” despite the fact that the team did not make a geographic move, but simply rebranded itself. According to Flaccus, Moreno “changed the name to make the most of the Angels’ location in the nation’s second-largest media market …. Using Los Angeles in the name would attract more sponsorships, advertising, and broadcast contracts.” Giulianotti & Robertson (2004) suggest that fans throughout the world often are more likely to identify a sports organization with its brand, rather than with its city or region of association.

Beyond concerns about removing New Jersey from the team name, “Red Bull” has been criticized for sending signals that Major League Soccer is not first-class. Former MetroStars public relations specialist Tony Miguel (quoted in Spangler, 2006) said:
The biggest problem (for Major League Soccer) is regarding the credibility and perception of soccer among the mainstream media. MLS is already seen by most in the mainstream media as a minor league. Red Bull New York only adds to the perception. Imagine the outcry that would occur if the New York Yankees became the New York GEICO’s. This is a desperate move by a league desperate for investors. I think in the long run this hurts MLS much more than it helps the league.

Another factor that likely increased tension about the renaming is that a small group of diehard fans may have feared that Red Bull would discard MetroStars history and traditions. However, Galarcep (2006) suggests that Red Bull learned from its mistakes with SV Salzburg and will handle the matter more sensitively. He contends that the team’s success on the pitch—not its name—will be the key to keeping existing fans and wooing new supporters.
In contrast, Red Bull officials contend that taking New Jersey from the name is not really significant. Red Bull spokesperson Patrice Redden stated that, “In the tradition of the New York Jets and the New York Giants and even the New York Cosmos, we believe that the metropolitan New York area is truly one of the most influential markets in the entire world and the New York affiliation is an excellent representation of this international culture” (Zeigler, 2006).

The French news service Agence-France Presse contends that Red Bull bought the soccer club to boost the image of its brand in the United States. Said sports marketing specialist Rainer Kress of Vienna, “American Major League Soccer … is booming and with the MetroStars deal Red Bull is pursuing a strategy built entirely around marketing” (Butler, 2006). Alexi Lalas, at the time the general manager of Red Bull New York, said renaming the team was “bold,” and “the marketplace in particular needs bold moves.” He also suggested that fans who know the history of and trends in international professional soccer should accept corporate naming. Lalas described further the significance of Red Bull’s purchase of the team (Freedman, 2006): “We are associating ourselves with a world-renowned brand that is synonymous with creative, innovative and unique marketing. All the resources of Red Bull will be brought to bear to market the Red Bulls. I’m excited.”

WHERE MIGHT THIS LEAD?
According to Chris Smith, a Dallas-based specialist in sports and event marketing, Red Bull’s example may not necessarily lead to other teams being named outright for corporations. “It will probably be more of a trickle than a flood,” he said. “While sponsors are eager to step up, they understand the emotional attachment that fans have with teams they love. There’s the potential for a strong negative backlash” (Anderson, 2006). Commented the University of Oregon’s Paul Swangard (cited in Turnbull, 2006), corporate naming is “sort of the last bastion in American sports … [American sports fans] haven’t been willing to accept it.”

On the other hand, some marketing experts contend that the corporate influence found throughout international soccer, and increased advertising in many American sports, may make corporate team names more acceptable. For example, soccer jerseys in Europe typically feature a corporate sponsor’s name prominently, while the logo of the football club may be barely noticeable. Despite the significant commercial presence, however, these teams are almost universally referred to by the name of the football club, not the sponsor. In 2007 Major League Soccer began to allow franchises to prominently display the names of corporations on the front of jerseys, although most teams do not take the name of the corporate sponsor. For example, Real Salt Lake’s uniforms prominently display the name Xanga (a natural juice drink), Chivas USA features the PEMEX logo (Mexico’s national gas company), and the jersey of the Los Angeles Galaxy is adorned with the name and logo of HerbaLife. In all these cases, the logo of the corporate sponsor is shown much larger than the team name (Weinbach, 2006).

FC Barcelona, one of the most storied football clubs in Spain, recently put a new spin on this trend when they entered into an agreement to feature the United Nations children’s charity, UNICEF, on uniforms. Even though FC Barcelona will not directly gain any revenue from this decision, featuring UNICEF’s logo is seen by marketing experts (Hughes, 2006) as a way to create an image of social responsibility on the part of the club and its supporters.
Skidmore (2006) discusses the merits of naming sports teams after corporations, writing that, “Because of mergers, bankruptcies, etc., no league wants a franchise to have a new nickname every two seasons. There is also the problem of cheering for the ‘Verizons’ or the ‘Colgates’ … [Still,] if Team Red Bull can work for MLS, it may not be much longer before we see corporate names in the big four leagues.”

Similarly, Allan Adamson, brand manager at WPP Group, warns that there may be a downside to naming a team after a corporation, especially when problems arise (cited in Bosman, 2006). “The risk is, ‘What happens to the team when a product starts selling badly?’” says Adamson. “It’s a risky strategy, especially when you choose something that’s both an energy drink and an alcoholic mixer.” He likens the permanence of a team name to a tattoo and suggests it may be more difficult to change a team than a stadium named after a corporation.

CONCLUSION
It is clear that renaming professional soccer teams after the Red Bull energy drink led to at least some level of public opposition in both the United States and Austria. However, it is important to differentiate the public outcries in each nation. In Austria, it appears that much of the anger at Red Bull was due to perceived refusal of the new owners to acknowledge and maintain traditions of the original club. Fans found it especially offensive that Red Bull Salzburg ignored the 1933 founding date, instead treating the club as a new expansion team. In a similar light, Austrian soccer fans had closely affiliated SV Salzburg with many time-honored traditions, including the violet and white colors worn for decades. Breaking that tradition was a personal affront to large numbers of fans. In contrast, fan reaction in New York and New Jersey was more localized. There was relatively little criticism in either state, largely because of the relatively low profile of Major League Soccer on the American sports landscape. Certain politicians and civic leaders were angered by the removal of New Jersey from the team name when public funds were building its stadium in New Jersey. Many local residents, however, were not especially bothered by the move: Many activities and organizations around the region refer to themselves as belonging to the “greater New York City” metropolitan area (S. Weston, personal communication, Month Day, 2006). For smaller apples, it just makes sense, from a public relations and marketing perspective, to associate oneself with the Big Apple brand.
On a broader scale, a key question to ask is the extent to which naming a team after a corporation is thought offensive. In Europe, football fans have come to expect the fronts of uniforms to be adorned with large corporate symbols. Still, few football organizations in Europe are yet named after corporations. In America, it has gradually become acceptable to embrace, for a few professional teams at least, names that stem from corporate ties (e.g., the Green Bay Packers or Detroit Pistons). In contrast, the National Basketball Association recently denied a request to name a new Memphis franchise after FedEx Corporation. Perhaps the key principle is to choose a name that is not offensive or politically incorrect and that connotes, in a broad sense, our sports traditions or sporting endeavors.

The experiences of Red Bull provide some insights into how corporate names for sports teams might meet with more public acceptance. For example, after angering Austrian fans by discarding existing club traditions, Red Bull learned how important it is to understand the passionate relationships between teams and their fanatic supporters. A wiser Red Bull then worked hard to ensure that the traditions and supporter groups of the MetroStars would be respected following that team’s acquisition. In addition, the most important factor that may influence fans’ response to a new name is the extent to which the team succeeds on the field of play. If Red Bull shows it is willing to invest in teams and facilities to boost team performance, the issue of the franchise name may become less important.

In sum, one has to ask whether Red Bull’s practice of naming sports teams after its product is a trend that will become more widespread in America and Europe. The general consensus seems to be that naming teams after corporations may be more common among teams and leagues that, like Major League Soccer, have lesser status. The top-of-the-line sports leagues in the USA seem unlikely to adopt the practice in the immediate future. In the larger cultural context of sport, one has to come to grips with the reality that corporations have been investing in and promoting sports organizations for decades, even to the extent of naming teams after themselves. Although naming an established team after a corporation may seem egregious, perhaps it is just an indication of the important role of private investors in supporting sports organizations

For more information, contact Jensen at rwjensen@ag.tamu.edu or (979) 845-8571 or (979) 574-5187. Weston can be contacted at westons@mail.montclair.edu

REFERENCES

Anderson, C. (2006, March 23). Will pro sports franchises soon sell team-naming rights? PR Leap.

Bell, J. (2006, March 22). New Jersey seeing red over name. The New York Times.

Bosman, J. (2006, March 22). First stadiums, now teams take a corporate identity. The New York Times.

Burn, D. (2006, March 9). First it was stadiums, now it’s the actual team. AdPulp. Retrieved November 15, 2006 from http://www.adpulp.com/archives/2006/03/first_it_was_st.php

Butler, D. (2006, March 16). Boosting its image: Why Red Bull bought the metros. Big Apple Soccer. Retrieved December 6, 2006 from http://bigapplesoccer.com/article.php?article_id=5654

Clark, A. (Title). (2006, March 18). Red Bull New York? No bull here. [Television broadcast]. City: Fox Sports Channel. Retrieved July 1, 2007, from http://community.foxsports.com/blogs/Aljarov/2006/03/18/Red_Bull_New_York_No_Bull_Here

Dolan, K. (2005, March 28). The soda with buzz. Forbes.

Fatsis, S. (2006, June 17). A longtime loser, pro soccer begins to score in the United States. The Wall Street Journal.

Flaccus, G. (2006, January 13). Angels, City of Anaheim, begin name change trial. USA Today.

Frankston, J. (2006, March 10). New Jersey not happy with Red Bull New York. The Associated Press.

Freedman, J. (2006, March 9). Bullish on the future. SI.com. Retrieved July 5, 2007, from http://sportsillustrated.cnn.com/2006/writers/jonah_freedman/03/09/lalas.qa/index.html

Galarcep, I. (2006, March 10). A new era begins. ESPN SoccerNet. Retrieved July 5, 2007, from http://soccernet.espn.go.com/print?id=361287&type=story&cc=5739

Grathoff, R. (2006, June 1). Different pitch for Red Bulls: Name of MLS team a cause for debate. The Kansas City Star.

Gschwandter, G. (2004, September). The powerful sales strategy behind Red Bull. Selling Power.
Guenther, R. (2006, January). Modern football and the death of history. The Football Supporter, 12–14.

Giulianotti, R., & Robertson, R. 2004. The globalization of football: A study in the glocalization of the serious life. British Journal of Sociology, 55, 545–567.

Hein, K. (2001, May 28). A bull’s market: The marketing of Red Bull energy drink. Brandweek.

Ho, M. (2006, August 23). For Red Bull, it’s here, there and everywhere. The Washington Post.

Hughes, R. (2006, September 12). Barcelona changes pace (and uniform), paying to use UNICEF logo. The International Herald-Tribune.

Joyce, P. 2006. Letter from Austria. When Saturday Comes, April 8, 2003.

Lewis, M. 2001. Franchise relocation and fan allegiance. Journal of Sport & Social Issues, 25, 6–19.

Lindstrom, M. 2004. Branding is no longer child’s play. Journal of Consumer Marketing, 21, 175–182.

Lidz, F. (2003, August 4). The new extreme. SI.com. Retrieved July 5, 2007, from http://sportsillustrated.cnn.com/features/siadventure/30/new_extreme/

Lord, J. (2007, January 5). Title of article. The Albany (Indiana) Tribune. Retrieved July 6, 2007, from http://www.newstribune.net/cnhi/newstribune/homepage /local_story_005135036.html

McCole, P. 2005. Refocusing marketing to reflect practice: The changing role of marketing for business. Marketing Intelligence & Planning, 22, 531–539.

McGeehan, K. 2006. Red Bull might be on to something. Retrieved July 1, 2007, from Web site of the United States National Team Soccer Players Association, http://www.ussoccerplayers.com/

Nathanson, M. 2007. What’s in a name or, better yet, what’s it worth?: Cities, sports teams and the right of publicity. Case Western Reserve Law Review technical report 2007–21.

Page, J. (2006, March 14). Red Bull’s snub of New Jersey is just plain bull. The Bergen (New Jersey) Record.

Plenderleith, I. (2007, March 13). Springtime, love, and the Bundesliga. MLS News Review. Retrieved June 29, 2007, from http://ussoccerplayers.com/exclusives/mls/index.html?article_id=63

Plenderleith, I. (2007, Month Day). Poor choice of colors. MLS News Review. Retrieved June 29,2007 from http://ussoccerplayers.com/exclusives/mls/index.html?article_id=385

Quirk, J., & Fort, R. 1999. Hard ball: The abuse of power in pro team sports. Princeton, NJ: Princeton University Press.

Robinson, M. (2005, October 2). The Salzburg hills are alive with the sound of protest. Scotland on Sunday.

Rouvalis, C. (2006, October 15). Energy drink sales soar as young adults seek juice and cachet of products. The Pittsburgh Post-Gazette.

Sells, A. (2006, May 2). Major League Soccer MVP Taylor Twellman signs multiyear endorsement deal with Red Bull energy drink. 2006. PR News Today.

Skidmore, G. (2006, March 9). Will Red Bull give corporate nicknames wings? Sports Law Blog. Retrieved July 3, 2007, from http://sports-law.blogspot.com/2006/03/will-red-bull-give-corporate-nicknames.html

Spangler, A. (2006, March 29). A certain brand of soccer. This Is American Soccer. Retrieved July 1, 2007, from http://www.thisisamericansoccer.com/archives/2006/03/a_certain_brand_1.html

The campaign for violet and white. (n.d.). Retrived Month Day, Year, from http://violett-weiss.at/

Thomaselli, R. (2006, March 10). Red Bull buys, renames soccer team. Advertising Age.

Travis, C. (2006, March 17). Red Bull flows as MLS opens marketing floodgates. CBS Sportsline. Retrieved November 1, 2006, from http://www.sportsline.com/print/spin/story/9315319

Turnbull, J. (2006, March 14). Energy drink takes New Jersey out of MetroStars. The Global Game. Retrieved July 3, 2007, from http://www.theglobalgame.com/blog?cat=29

Van Gelder, S. 2005. The new imperatives for global branding: Strategy, creativity and leadership. Brand Management, 12, 395–404.

Weinbach, J. (2006, September 28). Major League Soccer to sell ad space on jerseys. The Wall Street Journal.

Wilde, P. (2006, April 6). New York Red Bulls: Using claims of performance enhancement to market stimulant beverages to athletes and fans. U.S. Food Policy. Retrieved July 5, 2007, from http://usfoodpolicy.blogspot.com/2006/04/new-york-red-bulls-using-claims-of.html

Ziegler, M. (2006, March 15). New name for MLS Team—Red Bull New York—has opened a can of criticism. San Diego Union-Tribune.

Zimbalist, A. 1998. The economics of stadiums, teams and cities. Policy Studies Review, 15, 17–26.

2019-10-28T14:01:19-05:00January 7th, 2008|Contemporary Sports Issues, Sports Facilities, Sports Management, Sports Studies and Sports Psychology|Comments Off on How Do Fans React When Sports Teams Are Named After Corporations?

Quality Control Procedure for Kinematic Analysis of Elite Seated Shot-Putters During World-Class Events

ABSTRACT
Kinematic analyses of elite shot-put throwers commonly involve shot-trajectory parameters determined under experimental conditions with an accuracy-based procedure. This can be only partially implemented within an event-constrained procedure (as opposed to experimental conditions). Event-constrained procedures, while they provide realistic information collected in an open environment, introduce several constraints that can potentially compromise accuracy measures. This study concerns a quality control procedure intended to address such constraints. The quality control procedure relies on 5 key elements aimed at reducing and reporting error and validating measures of the shot trajectory. The performance of 7 world-class shot-putters during international events was calculated using video data recorded at 50 Hz with a camera located to the side of the athlete. Accuracy was above 75% for all the attempts and above 94% during 4 attempts. This study demonstrated (a) the need to systematically implement this procedure for kinematic analyses based on event-driven recordings; (b) the value of quality indicators in making decisions concerning the instant of release; and (c) the importance of reporting this procedure’s outcomes in terms of error and percentage error.

INTRODUCTION
The performance of world elites in the shot put, measured as the distance the shot is thrown, results from the interaction between throwing technique and the design of the throwing chairs (O’Riordan & Frossard, 2006). That interaction shapes the parameters of the shot trajectory, which depends on the position, the velocity, and the angle of the shot at the instant of release ( Ariel, 1979; Dessureault, 1978; Chow, Chae, & Crawford, 2000; Linthome, 2001; Lichtenburg & Wills, 1978; McCoy, Gregor, Whiting, & Rich, 1984; Sušanka & Štepánek, 1988; Tsirakos, Bartlett, & Kollias, 1995; Zatsiorsky, Lanka, & Shalmanov, 1981). Sport scientists, classifiers, coaches, and athletes use the parameters of the shot trajectory to better understand the link between disability and performance (Higgs, Babstock, Buck, Parsons, & Brewer, 1990; McCann, 1993; Vanlandewijck & Chappel, 1996; Williamson, 1997; Chow & Mindock, 1999; Chow et al., 2000; Laveborn, 2000; Tweedy, 2002). Video recording allows for estimation of parameters, using primarily an accuracy-based procedure or event-constrained procedure, as illustrated in Figure 1.

Kinematic Analysis - Figure 1
Figure 1. Overview of the video recording (A), the data processing (B) and the outcomes (C) of the parameters of the shot’s trajectory of elite seated shot-putters. The parameters determined using an accuracy-based procedure rely on data collected during training and in laboratory,which presents the advantage of accommodating the typical experimental requirements but it provides only partially realistic information regarding the performance. The event-constrained procedure provides realistic information collected in the open environment presenting several constraints. Thus, a quality control is needed to reduce, validate, and report the errors. This will ensure that sport scientists, classifiers, coaches, and athletes have a better appreciation of the limitations of the data presented about the performance.

Accuracy-based procedure

Video recordings made during training or as part of laboratory motion analysis, whether for routine observation or for research, must accommodate typical experimental requirements for three-dimensional reconstruction, including suitable calibration volume, appropriate number of cameras, precise positioning of cameras, use of active or passive markers, and an unrestricted number of attempts. A flexible set-up of this sort enables an experimental approach employing trial and error, wherein quality control is achieved through repeat recording until the desired kinematic parameters (i.e., shot trajectories) are satisfactorily accurate. The accuracy and validity of parameters reported in research may be taken for granted, even though authors seldom report key indicators like number of frames tracked after release, or calculation of performance using parameters or using tape measure, or the difference between these two performances (Chow & Mindock, 1999; Chow et al., 2000).

Unfortunately, trajectory information obtained from non-competitive environments only partially represents the throwing technique an athlete uses while competing. Participants in a study by Chow et al. (2000) performed, on average, 15±9% below their personal best, leading the researchers to conclude that, in order to develop a data base of ideal performance characteristics, numerous quantitative data needed to be obtained, particularly those collected during leading competitions.
Event-constrained procedure

Video recordings of elite shot-putters’ throwing techniques were made on the field of play during the 2000 Paralympic Games, 2002 International Paralympic Committee World Championships, and select Australian national events (Frossard, O’Riordan, & Goodman, 2005; Frossard, O’Riordan, Goodman, & Smeathers, 2005; Frossard, Schramm, & Goodman, July 2003; O’Riordan, Goodman, & Frossard, 2004). Recording in these open environments entailed certain constraints (Frossard, O’Riordan, Goodman, & Smeathers, 2005; Frossard, Stolp, & Andrews, 2006), presented in Figure 1. Multi-purpose recording becomes necessary for capitalizing on an event’s uniqueness and for securing the distinct kinematic data sets of interest to distinct parties. Classifiers, for instance, may be interested in assessing the full range of upper-body movement (Chow et al., 2000; Tweedy, 2002). Engineers, in turn, may seek to study the deformation of the pole. Coaches’ main interest may be something as specific as hip-movement pathways during forward thrusting, or the exact position of the feet (O’Riordan, Goodman, & Frossard, 2004). Finally, the biomechanist’s interest may well be the parameters of the shot trajectory (Chow et al., 2000). Under experimental conditions, optimal accuracy often results from a focus on one data set at a time, that set obtained using optimal field of view and calibration volume. During competitive events, a compromise must be made as all parameters are observed using a single field of view. Furthermore, various technical barriers are presented on the playing field, including lack of control over the event and inevitable need to make recordings in a non-disruptive fashion. There is, in short, a one-off chance to record any attempt, with space only for one to two cameras, and despite likely obstructions of the field of view by equipment, referees, officials, TV crew, or the like.

Such constraints can be assumed to affect the accuracy of the kinematic data. Even the implementation of an accuracy-based approach within an event-constrained procedure will only partially guarantee sufficient accuracy. Nevertheless, a formal quality control procedure limited to determining shot trajectory parameters and occurring after the video recording stage could offer help to achieve highest possible accuracy.

PURPOSE

The authors’ ultimate aim is to propose a quality control procedure able to reduce error in the measurement of shot trajectory parameters and validate measured parameters, as well as to refine and standardize the format used to report measurement error. The proposed procedure relies on five key quality indicators that should influence decisions about when the moment of release occurs. The paper also has four secondary purposes. First, it comprises a detailed example of the entire procedure as it was deployed with the Class F55 male athlete who won the gold medal at the 2002 International Paralympic Committee (IPC) World Championships. Second, it tracks the procedure’s outcomes in terms of 7 elite shot-putters participating in 2 world-class events. Third, it presents possible sources of error inherent in the proposed videotaping setup. Fourth, it makes several recommendations for future on-field studies.

METHODS

Events
Video recordings were made during two world-class events, the 2000 Paralympic Games held in Sydney, Australia (4 classes of competition), and the 2002 IPC World Championships held in Lille, France (3 classes of competition), as indicated in Table 1.

Table 1
Event and total number of athletes competing in each class included in this study (PG: Sydney 2000 Paralympic Games, WC: Lille 2002 International Paralympic Committee World Championships).
Kinematic Analysis - Table 2
Participants
A total of 51 shot-putters were part of the present study, including 39 males and 12 females. For the competitions, each athlete had been classified according to the latest International Stoke Mandeville Wheelchair Sports Federation classification system (Laveborn, 2000). Table 1 illustrates total numbers of these athletes competing in each class, although the present analysis was limited to those who became gold medalists in four select classes (F52, F53, F54, and F55). Though not all-inclusive, the sample was deemed sufficient for illustrating the principles of the quality control procedure. (Gold medalists also typically generate greatest interest among sport scientists, coaches, and athletes.) Female athletes assigned to the F52 and F54 classes had competed jointly at the Sydney Paralympic Games, due to the small numbers of athletes in these classes, and a single gold medal was awarded. For our research, however, the performance of the event’s top competitor in each of these classes was considered. The female Class F53 shot-put event was canceled for lack of athletes.

Data processing

The sequence of the following 7 key steps used to process video data is shown in Figure 2.

Kinematic Analysis - Figure 2
Figure 2. Seven key steps of data processing, including the quality control procedure and the five associated quality indicators.

Step 1: Camera set-up

Frossard, Stolp, and Andrews (2003) have previously provided a thorough guide to the practical aspects of video camera set-up during world-class events. Therefore, this paper will limit itself to key elements of that set-up. During the 2 events included in this study, each put was recorded using 1 digital video camera (SONY Digital Handycam DCR-TRV15E), set at a sampling rate of 25 Hz. A “household” camera was chosen because it was affordable, discreet, and readily available. High-resolution cameras, by contrast, require exacting lighting conditions and are expensive and fragile. Some video cameras commercially available at the time of the events would have allowed high-speed filming, but at the cost of compromised resolution.
The SONY camera was placed approximately 1.1 m high at a distance between 8.0 m and 10.0 m, perpendicular to the length of the plate. The angle between the optical axis of the camera and the ground was approximately 90 degrees. The field of view included the full length (2.29 m) and full width (1.68 m) of the plate on the ground. The field of view was furthermore enlarged in the direction of the put, to ensure the recording of at least the first 5 frames of the shot’s aerial trajectory (see Figure 3A). Under experimental conditions, this field of view can be obtained by zooming to reduce the perspective error once the camera is positioned with respect to the plate. In this study, the camera was placed relatively close to the plate in an effort to lessen the possibility of intrusion into the field of view by equipment, referees, or TV crews. Nevertheless, the zoom was occasionally used. This camera position resulted in a pixel resolution ranging from 0.95 cm to 1.85 cm, depending on the camera’s position and the zoom setting.

Kinematic Analysis - Figure 3

Figure 3.Example of male gold medallist in the class F55 participating in the shot-put event of the 2002 IPC World Championships seated in the throwing frame (D) attached to a plate (E) using ties (C) that is facing the sector (F). Figure A provides an example of field of view of the camera with the body’s segments’ position and the shot at the instant of release (Tfinal – Frame 91). Figure B represents a stick figure of the athlete with the key instants needed to determine the parameters of the shot’s trajectory in the Global Coordinate System (GCS[O, X, Y]).

Step 2: Video recording
A total of 387 attempts, corresponding to nearly every one of the attempts made by each athlete in each class, were recorded and stored on MiniDVs. The duration of the video recording of each attempt was approximately 7 seconds. An attempt began when the referee handed the shot to the athlete and ended shortly after the shot landed on the ground. A customized calibration frame (2 m length x 1.5 m height x 1 m width) containing 43 control points placed on top of the plate was recorded at the beginning and at the end of each event.

Step 3: Video digitizing
The video recording of the calibration frame and of the best attempt in each class (the gold-medal throw) was digitized at 50 Hz using Digitiser 5.0.3.0 software, manufactured by SiliconCOACH Ltd. This sampling rate was achieved by de-interlacing the initial video frames, which affected accuracy only on the horizontal axis.

Step 4: Tracking
The Digitiser software was used to track, frame-by-frame, the center of the shot, the distal end of the middle finger, the position of the wrist, and the origin of the two-dimensional Global Coordinate System (GCS[O, X, Y]). The latter corresponded to the middle of the line of reference located in the front and at the bottom of the throwing frame, used by the referee to measure the performance, as illustrated in Figure 3. The tracking started with the back thrust and ended when the put was no longer within the field of view, which included 5 frames or more after the estimated moment of release. Tracking of the full body was obtained only for the male Class F55 gold medalist (see Figure 3B).
Step 5: Selecting instant of release
The 2 coordinates of the points tracked were imported into a customized Matlab software program (Math Works, Inc.). An operator used the software to select a combination of 2 positions of the shot, allowing calculation of the parameters of the shot’s trajectory (also see Step 6, below). The first position, (Tinitial), corresponding to the instant of release, was indicated by separation between the finger and the shot of a distance larger than the shot’s diameter. The second position, (Tfinal), corresponded to one of the 3 consecutive frames. The two-dimensional coordinates of the displacement were not smoothed or filtered to avoid end point distortions of the limited number of samples after the moment of release.
Step 6: Calculation of parameters of shot trajectory

The Matlab software implemented the classic equations from the literature (Lichtenburg & Wills, 1978; Linthome, 2001) for calculating the trajectory of the shot, allowing the landing distance to be estimated. The performance calculation was determined from the parameters of the shot at the instant of release, including (a) resultant horizontal and vertical components of the translational velocity; (b) resultant horizontal (advancement) and vertical (height) components of the position; and (c) the angle of the trajectory. The performance calculation was also corrected by the radius of the shot, as the official performance was measured from the landing mark on the ground closest to the Global Coordinate System.
Step 7: Comparison of official and measured performance

The performance calculation was compared with the official performance, which was the distance measured by the referee during the event; calculation error indicators and calculation quality indicators were employed as described below. The official performance measure was taken as the value of reference.

Quality control procedure

The quality control procedure relied on two efforts aimed at reducing and reporting error and validating measures of the shot trajectory, as presented in Figure 2. The first included the digitizing of the displacements of the shot and the operator’s subsequent selection of the best combination of Tinitial and Tfinal . Feedback on the quality of the selection was obtained from the 5 key quality indicators, as follows:

Average acceleration after release on vertical axis (Quality Indicator 1—Step 5)

In principle, the vertical velocity of the shot must be constant, and its acceleration must be equal to 9.81 m.s-2. The software therefore calculated the regression line of the vertical velocity between the frame following Tfinal and the last frame available, in order to eliminate random pointing errors. Then, it calculated the average acceleration, as illustrated in Figure 4. The average over four frames was 10.78 m.s-2 in the case of the male in Class F55.

Mean instantaneous acceleration after release on horizontal axis (Quality Indicator 2—Step 5)

In principle, the horizontal velocity of the shot must be constant, and its acceleration must be nil. The software therefore calculated the mean instantaneous acceleration between the frame following Tfinal and the last frame available, as illustrated in Figure 4. The mean over four intervals was -0.89±0.35 m.s-2 in the case of the male in Class F55.
Calculation error (Quality Indicator 3—Step 7)

Expressed in meters and corresponding to the discrepancy between official and calculated performance measures, the calculation error suggests the general quality of the data processing. A positive error indicates a calculated performance measure that overestimates the official performance, while a negative error indicates a calculated performance measure that underestimates it.

Calculation quality (Quality Indicator 4—Step 7)

The calculation quality corresponds to the percentage of the absolute value of the error, in relation to the official performance measure (such as: Calculation quality=[100-(Abs(Error)/Official performance)*100]). This quality indicator provides an understanding of the data processing’s quality in absolute terms, but it cannot indicate the direction of error.
Sensitivity analysis of tracking of Tinitial and Tfinal (Quality Indicator 5—Step 7)

Preliminary studies showed that an error of ±2 pixels could significantly affect calculation of the performance. However, the software was able to provide a succinct sensitivity analysis of the tracking, the outcome of which is reported in Table 2. Sensitivity analysis comprised recalculation of the performance using the combination of positions from Step 6, with 2-pixel positive and negative errors on Tinitial alone, on Tfinal alone, and/or on these two combined. As needed, this feedback guided operator readjustments concerning pointing of the shot (see also Step 4 above).

Table 2

Example of sensitivity analysis of the tracking (Quality Indicator 5) for the male gold medalist in F55 class consisting on recalculating the performance using the combination of positions determined in Step 5 with positive and negative errors of two pixels (3.6 cm) either on Tinitial and Tfinal only or on both combined. The white dot corresponds to the original position; the black dot corresponds to the position with the error. X and Y represent the horizontal and vertical axes, respectively.Kinematic Analysis - Table 2

Kinematic Analysis - Figure 4
Figure 4. Example of feedback provided for the male gold medallist in F55 class to determine the moment of release of the shot (Step 5). Section A represents the vertical position of the shot and the finger during the complete throw until the shot is outside the field of view. The square area corresponds to the zooming on the relevant data to be used to determine the moment of release. Section B presents the selected moment of release (Tinitial = Frame 91), when the separation of the shot and the finger is greater than the diameter of the shot and the second position (Tfinal = Frame 92). Section C provides the velocity of the shot after release as well as the average acceleration (Quality indicator 1) and the mean instantaneous acceleration (Quality indicator 2).
The second of the two efforts to reduce and report error and validate measures of the shot trajectory involved our selection of software that allowed the operator to process the data over an unlimited number of iterations from Step 4 to Step 7, until discrepancies between calculated and official measures had been minimized. Each iteration represented one combination of data points as determined in Step 5.

RESULTS

Table 3
Outcome of the quality control procedure. The number of iterations corresponds to the number of attempts made by the operator during the quality control procedure to minimise the difference between the official and calculated performance. The error corresponds to the difference between the official and calculated performance (Quality indicator 3 (1)). The calculation quality corresponds to the percentage of the absolute value of the calculation error in relation to the official performance, such as: Calculation quality=[100-(Abs(Error)/Official performance)*100] (Quality indicator 4 (2)).
Kinematic Analysis - Table 3
Table 3 presents, by competitive class, the quality control procedure’s outcomes, including number of iterations, calculation error, and calculation quality. The smallest difference between a calculated and an official performance measure was obtained from a minimum of 3 (maximum of 9) iterations. Calculation error ranged from 0.01 m to 1.33 m, with a mean of 0.54±0.46 m. The absolute calculation quality ranged from 79% to 100%, with a mean of 92±8 %.

DISCUSSION

These results overall might be considered satisfactory, since athlete performance during 4 out of 7 puts was calculated with accuracy surpassing 94%. However, accuracy surpassed only 79% for three competitive classes (F53 male, F54 male and F52 female), and the number of iterations was high. This finding indicates that, for these puts, the shot trajectory parameters were not determined with sufficient precision, the result primarily of pincushion distortion, sampling frequency, and projection of shot displacements onto the sagittal plane.
Pincushion distortion

Tracking of the shot’s displacement took place at the right top corner of the screen, outside the calibration volume with its maximum 1.5 m on the vertical, 0.5 m on the horizontal, axis. In principle, this zone is the most prone to pincushion distortion, in which straight lines appear to bow in toward the middle. While such distortion must be acknowledged, it is unlikely to have contributed strongly to the lack of accuracy.
Sampling frequency

Despite its sampling frequency of 50 Hz, the shot appears fuzzy at the instant of release because it has traveled significant distances between successive frames. This made it sometimes difficult, during Step 4, to track the exact center of the shot at the instant of release. Sampling frequency could have had impact on the estimation of the position of the shot and on the estimation of the speed of release. However, speed of release and error do not seem to be correlated here. Quality Indicator 5 assisted in determining the most accurate pointing, as illustrated in Table 2.
Projection of the displacements of the shot onto the sagittal plane

In this study, the main source of error was the positioning of the camera to the side of the athlete, which limited calculation of the speed of release to the sagittal plane alone. Visual analysis of the footage, however, showed that the throwing technique of athletes in these classes included more rotation in the transverse plane. The consequent projection of out-of-plane movement onto the sagittal plane tends to result in underestimation of speed of release and overestimation of release angle. This is reflected in our finding of a constant mean instantaneous acceleration after release on horizontal axis (Quality Indicator 2), rather than a nil mean, as was obtained for the Class F55 males. The slope of the curve corresponds, then, to the angle of the shot trajectory in the transverse plane.

In principle, the best way to alleviate these limitations would be to use a three-dimensional motion analysis system with a data acquisition rate ranging up to 100 Hz. Such a system should provide enough samples to accurately determine the shot’s position at the instant of release and to enable further smoothing of the data if required. Furthermore, with such a system the actual trajectory of the shot could be calculated in three, not two, dimensions, which would improve the accuracy of velocity and angular data

Ideally, put-throwing analysis should require at least four cameras, aligned diagonally with each corner of the plate, as well as a preferred fifth camera located above the athlete ( Allard, Stokes, & Blanchi, 1995; Marzan, 1975). Such a camera arrangement, while possible in an experimental framework, would be difficult to implement on the field during a world-class event, its invasive nature perhaps prompting organizing committees to deny researchers access. In addition, some 20 people work in the immediate throwing area alone, making it highly likely that the field of view of cameras on the floor would become obstructed or compromised as the recording of attempts progressed ( Frossard, Schramm, & Goodman, July 2003; Frossard, Stolp, & Andrews, 2003). A more feasible alternative involves using two commercially available high-speed cameras recording at 100 Hz or better, with full resolution. These cameras should be placed, at a distance, to the front and on the side of the thrower, allowing a bi-planar analysis in the sagittal and frontal planes. (Recordings made in this fashion should also accommodate three-dimensional reconstructions.) It would then become possible to estimate the rotation of the throwing upper arm in the transverse plane. Furthermore, the camera in front would provide data allowing one to determine the distance of the shot’s landing position in relation to the sagittal plane. Alternatively, the offset could be obtained from the laser pointer used by officials as they read the 3D coordinates of the shot at the point of landing. The offset could be used to correct for projection onto the sagittal plane.

CONCLUSION
A quality control procedure for video-recording elite male and female shot-putters during world-class events has been developed whose outcome is the calculation, with reasonable accuracy, of performances at outdoor competitive events. The developers of the quality control procedure acknowledge that diminished accuracy results mainly from limited sampling frequency supplied by the selected SONY video camera and from significant out-of-plane movement. The point is made that kinematic analyses of shot-putters at this level would be more beneficial if they were three-dimensional, rather than two-dimensional, even though most throwing action occurs in the sagittal plane. Because use of a three-dimensional motion analysis system is precluded on the field of play for logistical reasons, practical compromises must be made.

The present study made three majors contributions by demonstrating (a) the need to systematically implement a quality control procedure when conducting kinematic analyses of event-constrained recordings; (b) the benefits of using quality indicators to support decisions about tracking and determining instants of release; and (c) the need to report quality control outcomes in terms of both error and calculation quality. Equipped with data of this type, sport scientists, classifiers, coaches, and athletes will have a better feel for the level of accuracy truly obtainable during competitive events. A better appreciation of such data’s limitations should serve them all well. The quality control procedure that has been proposed can be implemented within an accuracy-based effort.

Recommendations from this study would be particularly important to future studies focusing predominantly on from-the-field data. It is further anticipated that this study will provide key information to sport scientists, coaches, and elite shot-put athletes trying to fully grasp the correlation between shot trajectory parameters and either classification or performance.

REFERENCES

Allard, P., Stokes, I. A. F., & Blanchi, J. P. (Eds.) (1995). Three-dimensional analysis of human movement. Champaign, IL: Human Kinetics.

Ariel, G. (1979). Biomechanical analysis of shotputting. Track and Field Quarterly Review, 79(4), 27–37.

Chow, J. W., Chae, W., & Crawford, M. J. (2000). Kinematic analysis of shot-putting performed by wheelchair athletes of different medical classes. Journal of Sports Sciences, 18, 321–330.

Chow, J. W., & Mindock, L. A. (1999). Discus throwing performances and medical classification of wheelchair athletes. Medicine & Science in Sports & Exercise, 99, 1272–1279.

Dessureault, J. (1978). Kinetic and kinematic factors involved in shotputting. Biomechanics 6B, 51–60.

Frossard, L., O’Riordan, A., & Goodman, S. (2005). Applied biomechanics for evidence-based training of Australian elite seated throwers. International Council of Sport Science and Physical Education “Perspectives” series in Press.

Frossard, L., O’Riordan, A., Goodman, S., & Smeathers, J. (2005). Video recording of seated shot-putters during world-class events. 3rd International Days on Sports Science.

Frossard, L. A., Schramm, A., & Goodman, S. (2003, July). Kinematic analysis of Australian elite seated shot-putters during the 2002 IPC World Championships: Parameters of the shot’s trajectory. XIth Congress of the International Society of Biomechanics, Dunedin, International Society of Biomechanics.

Frossard, L. A., Stolp, S., & Andrews, M. (2003). Systematic video recording of seated athletes during shotput event at the Sydney 2000 Paralympic Games. International Journal of Performance Analysis in Sport .

Frossard, L. A., Stolp, S., & Andrews, M. (2006). Video recording of elite seated shot putters during world-class events. The Sport Journal, 9(3), [pages]. Retrieved from http://www.thesportjournal.org/2006Journal/Vol9-No3/Frossard.asp.

Higgs, C., Babstock, P., Buck, J., Parsons, C., & Brewer, J. (1990). Wheelchair classification for track and field events: A performance approach. Adapted Physical Activity Quarterly, 7, 22–40.

Laveborn, M. (2000). Wheelchair sports: International Stoke Mandeville Wheelchair Sports Federation track and field classification handbook. Aylesbury, UK: International Stoke Mandeville Wheelchair Sports Federation.

Lichtenburg, D. B., & Wills , J. G. (1978). Maximizing the range of the shot put. American Journal of Physics, 46(5), 546–549.

Linthome, N. (2001). Optimum release angle in the shotput. Journal of Sports Sciences, 19, 359–372.

Marzan, G. T. (1975). Rational design for close-range photogrammetry. University of Illinois at Urbana-Champaign.

McCann, B. C. (1993). The medical disability–specific classification system in sports. Vista ’93 The Outlook: Proceedings of the International Conference on High Performance Sport for Athletes with Disabilities, Edmonton, Rick Hansen Centre.Vanlandewijck and Chappel.

McCoy, R. W., Gregor, R. J., Whiting, W. C., & Rich, R. G. (1984). Technique analysis: Kinematic analysis of elite shot-putters. Track Technique, 2868–2871

O’Riordan, A., & Frossard, L. (2006). Seated shot-put: What’s it all about? Modern Athlete and Coach, 44(2), 2–8.

O’Riordan, A., Goodman, S., & Frossard, L. (2004). Relationship between the parameters describing the feet position and the performance of elite seated discus throwers in Class F33/34 participating in the 2002 IPC World Championships. AAESS Exercise and Sports Science Conference.

Sušanka, P., & Štepánek, J. (1988). Biomechanical analysis of the shot put. Scientific Report on the Second IAAF World Championship. Monarco, IAAF: 1-77.

Tsirakos, D. M., Bartlett, R. M., & Kollias, I. A. (1995). A comparative study of the release and temporal characteristics of shot put. Journal of Human Movement Studies, 28, 227–242.

Tweedy, S. M. (2002). Taxonomic theory and the ICF: Foundation for the Unified Disability Athletics Classification. Adapted Physical Activity Quarterly, 19, 221–237.

Vanlandewijck, Y. C., & Chappel, R. J. (1996). Integration and classification issues in competitive sports for athletes with disabilities. Sport Science Review, 5, 65–88.

Williamson, D. C. (1997). Principles of classification in competitive sport for participants with disabilities: A proposal. Palaestra, 13(2): 44–48.

Zatsiorsky, V. M., Lanka, G. E., & Shalmanov, A. A. (1981). Biomechanical analysis of shotputting technique. Exercise and Sports Science Review, 9, 353–387.

2016-10-12T11:13:54-05:00January 7th, 2008|Sports Exercise Science, Sports Management, Sports Studies and Sports Psychology|Comments Off on Quality Control Procedure for Kinematic Analysis of Elite Seated Shot-Putters During World-Class Events

Nutrition-related knowledge, attitude, and dietary intake of college track athletes

ABSTRACT
Although it is recognized that athletic performance is enhanced by optimal nutrition, nutrition-related knowledge deficits and dietary inadequacies continue to persist among many college athletes. The purpose of this study of college track athletes was to measure nutrition knowledge, attitude regarding healthy eating and athletic performance, and dietary intake, identifying relationships among these parameters. A self-administered nutrition knowledge and attitudes survey and the youth/adolescent semi-quantitative food frequency questionnaire were used to measure nutrition knowledge and nutrition attitude and to assess diet quality, employing a convenience sample of 113 track athletes from two NCAA Division I schools. Mean knowledge was fair, with highest component scores attained for carbohydrate, vitamins and minerals, and protein. Low scores were found for vitamins E and C. Mean attitude scores were high and similar by sex. Overall mean diet quality was 84 ± 10 (M ± SD) of 110 possible. High mean dietary intake scores were found for vitamins C and A, cholesterol, saturated fat, calcium, and magnesium; low mean dietary intake scores were found for vitamin E, fiber, sodium, and potassium. Weak correlations existed between nutrition knowledge and attitude versus diet quality. In summary, we identified adequate intake and knowledge (carbohydrates), poor intake and knowledge (vitamin E), and adequate intake and lack of knowledge (vitamin C and protein). Future research should explore factors other than knowledge and attitude that may have primary influence on dietary intake among college athletes.

INTRODUCTION

It is well recognized that athletic performance is enhanced by optimal nutrition (American College of Sports Medicine, American Dietetic Association, and Dietitians of Canada, 2000). However, college athletes encounter numerous barriers that can hinder healthy eating, including lack of time to prepare healthy foods (due to rigorous academic and training schedules), insufficient financial resources to purchase healthy foods, limited meal planning and preparation skills, and travel schedules necessitating “eating on the road”(Malinauskas, Overton, Cucchiara, Carpenter, & Corbett, 2007; Palumbo, 2000). Research has demonstrated that athletes are interested in nutrition information, and that sport nutrition information is increasingly available (Froiland, Koszewski, Hingst, & Kopecky, 2004; Jonnalagadda, Rosenbloom, & Skinner, 2001; Zawila, Steib, & Hoogenboom, 2003).

Nevertheless, nutrition-related knowledge deficits and dietary inadequacies persist among many college athletes (Jacobson, Sobonya, & Ransone, 2001; Rosenbloom, Jonnalagadda, & Skinner, 2002; Malinauskas, Overton, Cucchiara, Carpenter, & Corbett, 2007; Zawila, Steib, & Hoogenboom, 2003). College athletes exhibit a lack of knowledge about the roles of protein, vitamins, and minerals in the body and also about supplementation with these nutrients (Jacobson, Sobonya, & Ransone, 2001; Rosenbloom, Jonnalagadda, & Skinner, 2002; Zawila, Steib, & Hoogenboom, 2003). For example, Jacobson and colleagues (2001) reported that male athletes are likely to believe that protein provides immediate energy and that high-protein diets increase muscle mass. Zawila and colleagues (2003) reported nutrition knowledge deficits among female cross-country runners.

Nutrition can play a key role in optimizing physical performance and recovery from strenuous exercise (American College of Sports Medicine, American Dietetic Association, and Dietitians of Canada, 2000). However, many college athletes have diets that warrant change to promote health and support performance (Malinauskas, Overton, Cucchiara, Carpenter, & Corbett, 2007). Specifically, diets that are low in fruits, vegetables, and whole grains and high in fat and processed foods are common among college athletes (Clark, Reed, Crouse, & Armstrong, 2003; Hinton, Sanford, Davidson, Yakushko, & Beck, 2004). To improve dietary intake among college athletes, further research is warranted identifying dietary inadequacies as well as factors influencing the dietary intake of athletes (Hinton, et al, 2004; Turner & Bass, 2001).

It is unclear if college athletes’ nutrition knowledge and attitudes about nutrition have an association with their dietary intake. Wilta and colleagues (1995) found that greater nutrition knowledge was associated with healthier dietary practices among runners, whereas Turner and colleagues (2001) reported no significant correlate relationships between knowledge and dietary intake among female athletes. These conflicting findings suggest that further research is needed to learn whether knowledge and attitude are primary factors impacting college athletes’ dietary intake. The purpose of the present study was to assess the nutrition knowledge, nutrition-related attitudes, and dietary intake of college track athletes. Specific research objectives were (a) to measure nutrition knowledge in regard to carbohydrate, protein, vitamins and minerals in general, and selected antioxidant vitamins; (b) to assess attitude regarding healthy eating and athletic performance; (c) to evaluate dietary intake; and (d) to identify if, for college track athletes, relationships exist among nutrition knowledge, attitude, and dietary intake.

METHODS

Approval to conduct the study was secured from the appropriate Institutional Review Board prior to data collection. Written consent was obtained from each participant. All data collection was performed by a single researcher.
Nutrition knowledge and attitude survey

A registered dietitian constructed a nutrition knowledge and attitude pilot survey (Jonnalagadda, et al, 2001; Zawila, et al, 2003). The knowledge section included five subject areas (carbohydrates, protein, vitamins and minerals in general, vitamin C, vitamin E) with 2–5 true/false statements per subject area. The attitude section included five statements of belief that healthy eating supports athletic performance. Participants used a 5-point Likert scale (1 = strongly disagree, 3 = neither agree nor disagree, 5 = strongly agree) to indicate level of agreement with each statement. The survey was reviewed for content validity by a second registered dietitian and for content clarity by a person in a profession other than health care. To pilot test the survey, 47 track athletes (26 males, 21 females) from a NCAA Division I program in the Piedmont region of the United States completed the self-administered survey. Only minor syntax modifications were necessary based on participant responses.

Assessing diet quality
The semi-quantitative youth/adolescent food frequency questionnaire (YAQ) assesses dietary intake over the 12 preceding months. The YAQ has demonstrated reproducibility and validity in youth and has been used to measure nutrient intakes among college athletes (Hinton, et al, 2004; Rockett, Wolf, & Colditz, 1995; Rockett et al., 1997). In the present study, data obtained with the YAQ were used to calculate diet quality scores. The total score was the sum of 11 “nutrient component scores,” including nutrients of concern (fiber, calcium, potassium, magnesium, and vitamins A, E, and C) and nutrients promoting metabolic dysregulation (saturated fat, cholesterol, added sugar, and salt) as indicated in the 2005 Dietary Guidelines for Americans (U.S. Department of Health and Human Services [USDHH] & U.S. Department of Agriculture [USDA], 2005). Under a framework provided by the Healthy Eating Index, each nutrient component score was 10 at maximum and 0 at minimum (Basiotis, Carlson, Gerrior, Juan, & Lino, 1999). A component score of 10 was assigned for a nutrient when intake met or exceeded the Dietary Reference Intake. Proportionately lower scores were assigned to nutrients when was intake less than recommended (Food and Nutrition Board, Institute of Medicine [FNBIM], 1997, 2000, 2001). Cholesterol, saturated fat, sodium, and fiber recommendations were based on 2005 Dietary Guidelines, while sugar recommendations were based on Recommended Dietary Allowances (USDHH & USDA, 2005; Food and Nutrition Board, Institute of Medicine, 2003). To obtain the maximum score of 10, criteria to be met included intakes of < 300 mg cholesterol, < 10% calories from saturated fat or sugar, < 2300 mg sodium, and > 14 g fiber/1,000 calories. To obtain the minimum score of 0, criteria to be met included intakes of > 15% calories from saturated fat or sugar, > 450 mg cholesterol, and > 4600 mg sodium (USDHH & USDA, 2005; Food and Nutrition Board, Institute of Medicine, 2003). Values between the maximum and minimum criteria were scored proportionately (Basiotis, et al, 1999).

Survey administration
A convenience sample of track athletes (N = 113) from two NCAA Division I track programs in the southeastern United States participated in the study during the fall of 2006.

Statistical analysis
All statistical analysis was conducted using SPSS 13.0. Descriptive statistics include means, standard deviations, 95% confidence intervals, and frequency distributions. Independent t-tests were used to compare mean knowledge and diet quality scores by sex. Simple linear regression was used to examine relationships between knowledge, attitude, and diet quality. An alpha level of .05 was used for all statistical tests.

RESULTS

A total of 118 participants completed the study. Data from 5 were excluded due either to incompleteness (n = 2), to a respondent’s age being less than 18 years (n = 1), or to a respondent’s competing only in field events (n = 2). The final sample size was 113 (61 males, 52 females), and the overall participation rate was 71%. Demographic characteristics of participants are reported in Table 1. The majority (67%) of participants were freshmen and sophomores. The participants’ reported event specialties were sprinting (45%), middle-distance (27%), and long-distance (29%). YOU ARE HERE
Table 1

Demographic Characteristics of College Track Athletes

Parameter (M ± SD) Males (n = 61) Females (n = 52)
Age (in years) 19.3 ± 1.2 19.1 ± 1.1

n % n %

Academic classification
Freshman 22 36 20 39
Sophomore 19 32 17 33
Junior 13 21 8 15
Senior 5 8 7 13
5th-year senior 2 3
Ethnic origin
American Indian 1 2 1 2
African American 21 35 19 37
Hispanic 1 2
Caucasian 30 49 26 50
Asian 1 2

Other 7 11 5 9
Not reported 1 1
Event specialty
Sprinting 25 41 24 46
Middle-distance running 12 20 4 8
Long-distance running 14 23 16 31
Not reported 10 16 8 15

Note. An athlete was described as a sprinting specialist if he or she reported primary competition events shorter than 800 m; as a middle-distance specialist if he or she reported primary competition events 800 m to 1500 m; and as a long-distance specialist if he or she reported primary competition events longer than 1500 m.

Mean nutrition knowledge and attitude scores are reported in Table 2. The mean knowledge score for all participants was 58% ± 13% (M ± SD), which did not differ significantly by sex. Although mean knowledge component scores were similar for males and females, by subject area the rate of correct responses ranged widely, from 26% to 76%. The highest mean knowledge scores were for carbohydrate, vitamins and minerals, and protein. Mean scores of less than 50% were found for vitamin E and vitamin C. Mean attitude scores were high and were similar for males and females.

Table 2
Nutrient Knowledge* and Attitude† Scores of College Track Athletes

Parameter (M ± SD) Males (n = 61) Females (n = 52) 95% CI

Nutrition knowledge 58.7 ± 1.6 57.8 ± 1.8 (55.9, 60.9)

Carbohydrate 76.1 ± 20.9 74.6 ± 17.3 (17.2, 33.3)
Protein 55.1 ± 19.9 54.2 ± 16.0 (0.2, 6.1)
Vitamins and minerals 63.0 ± 20.6 62.3 ± 20.0 (-6.9, 8.2)
Vitamin C 26.2 ± 34.9 33.7 ± 36.7 (7.8, 20.8)
Vitamin E 43.0 ± 30.7 47.1 ± 33.8 (5.2, 16.7)

Nutrition attitudes 80.4 ± 14.0 77.6 ± 12.4 (19.2, 20.4)

*Percent correct.
†Percent agreement that healthy eating supports athletic performance.

Mean diet quality scores are reported in Table 3. Overall mean diet quality for all participants was 83.6 ± 9.8. There were no significant differences in diet quality between the sexes. High mean dietary component scores were found for vitamin C, vitamin A, cholesterol, saturated fat, calcium, and magnesium, while low mean dietary component scores were found for vitamin E, fiber, sodium, and potassium. Mean fiber, cholesterol, and magnesium scores were significantly greater for females than males.

Table 3
Diet Quality Scores of College Track Athletes

Parameter (M ± SD) Males (n = 61) Females (n = 52) 95% CI_

Diet quality 82.6 ± 8.8 84.8 ± 10.8 (-5.8, 1.6)
Vitamin E 5.6 ± 2.1 5.3 ± 2.4 (-0.6, 1.2)
Vitamin C 9.4 ± 1.5 9.6 ± 1.2 (-0.7, 0.4)
Vitamin A 8.4 ± 2.3 8.5 ± 2.2 (-1.0, 0.7)
Fiber 6.1 ± 1.6 6.8 ± 1.7* (-1.3, -0.1)
Cholesterol 7.6 ± 3.5 8.6 ± 2.9* (-2.2, .2)
Saturated fat 8.0 ± 2.7 8.3 ± 2.6 (-1.3, 0.7)
Sucrose 7.8 ± 3.1 7.5 ± 3.2 (-0.9, 1.5)
Sodium 6.9 ± 3.1 7.1 ± 3.3 (-1.4, 1.0)
Potassium 6.8 ± 2.1 6.2 ± 2.3 (-0.3, 1.4)
Calcium 8.5 ± 1.7 8.4 ± 2.1 (-0.6, 0.9)

Magnesium 7.7 ± 1.9 8.5 ± 2.1* (-1.5, 0.1)

Note. Dietary intake was assessed using the youth/adolescent food frequency questionnaire (Rockett, Wolf, & Colditz, 1995). With this instrument, dietary quality is represented as the sum of the 11 nutrient component scores. Each component score ranged from 0 (minimum) to 10 (maximum), based on actual dietary intake as compared to recommended intakes (FNBIM, 1997, 2000, 2001, 2003; USDHH & U.S. Department of Agriculture, 2005). Higher scores indicate nutrient intakes relatively close to recommended levels.
*p < .05

There were very weak correlations for diet quality and attitude (r = 0.048) and diet quality and knowledge (r = 0.001). There was little correlation between knowledge scores for specific nutrients and corresponding dietary intake: carbohydrate (r = 0.011), protein (r = -0.009), vitamin C (r = -0.004), and vitamin E (r = -0.005).

DISCUSSION

The purpose of this study was to assess nutrition knowledge, attitude, and dietary intake of college track athletes. Specifically, we asked if knowledge and attitude were related to dietary intake. This research is novel because we examined relationships between knowledge about specific nutrients (carbohydrate, protein, and vitamins C and E) and actual intakes of these nutrients. Further, there is a lack of research on college athletes’ knowledge concerning antioxidant vitamins, despite the fact that many of them do supplement their diets with antioxidants (Froiland, Koszewski, Hingst, & Kopecky, 2004; Herbold, Visconti, Frates, & Bandini, 2004).

Among the college track athletes participating in this study, knowledge about carbohydrate and general knowledge of the roles of vitamins and minerals in exercise was fair. These athletes lacked knowledge, however, about the roles of protein, vitamin C, and vitamin E. For example, 82% (n = 93) of the athletes believed that vegetarian athletes require protein supplements to meet their protein needs, and 40% (n = 45) believed that the body relies on protein for immediate energy. Previous studies have similarly indicated a lack of knowledge of the specified nutrients among college athletes. Rosenbloom and colleagues (2002) found that 46% of athletes believed protein is the main energy source for the muscle and 34% believed athletes require protein supplementation.

Indeed, athletes may be tempted to use supplements to gain a competitive edge. Primary reasons athletes give for nutrient supplementation include increasing strength and energy and improving athletic performance (Froiland, Koszewski, Hingst, & Kopecky, 2004; Herbold, Visconti, Frates, & Bandini, 2004). In the present study, a majority (67%, n = 76) of the athletes believed athletes must take a multivitamin each day and 56% (n = 66) believed vitamins and minerals supply energy. Other studies, as well, have reported many athletes believing vitamins and minerals can increase energy (Jonnalagadda, et al, 2001; Rosenbloom, Jonnalagadda, & Skinner, 2002).

Furthermore, misconceptions about antioxidant vitamins characterized the majority of athletes in our study. For example, 53% (n = 60) believed it was necessary for an athlete to supplement with vitamin C to boost immune functioning, and 56% (n = 63) believed that vitamin E supplementation was necessary to protect red blood cells from oxidative damage and to promote oxygen transport to muscles. Other researchers have reported athletes supplementing with vitamins C and E to enhance their immune system and prevent illness (Froiland, Koszewski, Hingst, & Kopecky, 2004; Neiper, 2005). Overall, the nutrition knowledge deficits identified in the present study confirm that many college athletes lack understanding of the roles of protein, vitamins, and minerals in the body, and thus lack the ability to assess whether their dietary intake of nutrients warrants use of a supplement. Education strategies for sports professionals and athletes should focus on the roles of selected nutrients in exercise, how to obtain adequate dietary intake of the nutrients, and how to evaluate need for nutrient supplementation.

The mean nutrition attitude score was high for both sexes. Seventy-one percent (n = 80) strongly agreed that “Eating healthy foods will improve my athletic performance.” Our findings about positive nutrition-related attitudes are consistent with those of Zawila and colleagues (2003), who reported that runners exhibited positive attitudes regarding nutrition education. College athletes may be receptive to learning how to improve their dietary intake to correct nutrient inadequacies that can impact their sport performance.

The mean diet quality for both males and females was greater than 80%, indicating an overall healthy diet among those surveyed. In regard to mean component scores, males and females alike had high scores (greater than 8) for vitamin A, vitamin C, and calcium. In contrast, mean scores for intake of vitamin E, potassium, fiber, and sodium were low, indicating a need for nutrition education moving dietary intake of these nutrients into line with dietary recommendations.

We found that neither nutrition knowledge nor attitude correlated with dietary intake; knowledge was less than 1% predictive of dietary intake. Conflicting results have been reported for athletes regarding relationships between nutrition knowledge and dietary intake. Wilta and colleagues (1995) found that dietary intake was 27% predictive of nutrition knowledge among runners and thus concluded that runners with greater nutrition knowledge make better food choices. On the other hand, Turner and colleagues (2001) reported that osteoporosis knowledge was only 3% predictive of dairy intake among athletes and thus concluded that, among college athletes, there was no significant correlation between knowledge of osteoporosis and intake of dairy products. In the present study, nutrition-related attitude was only 5% predictive of dietary intake, indicating that attitude about eating to support performance was not the primary influence on dietary intake. In addition, no significant correlations were found between knowledge of specific nutrients and actual dietary intake of the nutrients. While examining these relationships, we identified adequate intake with adequate knowledge (carbohydrate), poor intake with lack of knowledge (vitamin E), and adequate intake with lack of knowledge (protein and vitamin C). As a result of this study’s findings, we suggest that future research should explore factors other than nutrition knowledge and attitude that influence dietary intake among college athletes, since knowledge and attitude were not found here to be primary factors impacting dietary intake.

Address correspondence to: B. Malinauskas, Ph.D., R.D., Assistant Professor, Department of Nutrition and Dietetics, East Carolina University,
Greenville, NC 27858-4353, malinauskasb@ecu.edu

REFERENCES

American College of Sports Medicine, American Dietetic Association, and Dietitians of Canada. Nutrition and athletic performance. (2000). Medicine and Sports Science, 32(12), 2130–2145.

Basiotis, P. P., Carlson, A., Gerrior, S. A., Juan, W. Y., & Lino, M. The healthy eating index: 1999–2000. U.S. Department of Agriculture, Center for Nutrition Policy and Promotion. (Publication No. CNPP–12). Retrieved from http://www.usda.gov/cnpp/Pubs/HEI/HEI99-00.pdf

Clark, C, Reed, D. B., Crouse, S. F., & Armstrong, R. B. (2003). Pre- and post-season dietary intake, body composition, and performance indices of NCAA Division I female soccer players. International Journal of Sports Nutrition and Exercise Metabolism, 13, 303–319.

Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for calcium, phosphorous, magnesium, vitamin D, and fluoride. Washington: National Academy of Sciences, 1997.

Food and Nutrition Board, Institute of Medicine. (2000). Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington, DC: National Academy of Sciences.

Food and Nutrition Board, Institute of Medicine. (2001). Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy of Sciences.

Food and Nutrition Board, Institute of Medicine. (2003). Dietary reference intakes for energy, carbohydrate, fiber, fat, protein, and amino acids. Washington, DC: National Academy of Sciences.

Froiland, K., Koszewski, W., Hingst, J., & Kopecky, L. (2004). Nutritional supplement use among college athletes and their sources of information. International Journal of Sports Nutrition and Exercise Metabolism, 14, 104–120.

Herbold, N. H., Visconti, B. K., Frates, S, & Bandini, L. (2004). Traditional and nontraditional supplement use by collegiate female varsity athletes. International Journal of Sports Nutrition and Exercise Metabolism, 14, 586–593.

Hinton, P. S., Sanford, T. C., Davidson, M. M., Yakushko, O. F., & Beck, N. C. (2004). Nutrient intakes and dietary behaviors of male and female collegiate athletes. International Journal of Sports Nutrition and Exercise Metabolism, 14, 389–404.

Jacobson, B. H., Sobonya, C., & Ransone, J. (2001). Nutrition practices and knowledge of college varsity athletes: A follow-up. Journal of Strength and Conditioning Resistance, 15(1), 63–68.

Jonnalagadda, S. S., Rosenbloom, C. A., & Skinner, R. (2001). Dietary practices, attitudes, and physiological status of collegiate freshman football players. Journal of Strength and Conditioning Resistance, 15(4), 507–513.

Malinauskas B. M., Overton, R.F., Cucchiara, A.J., Carpenter, A.B., & Corbett, A.B. (2007). Summer league college baseball players: Do dietary intake and barriers to eating healthy differ between game and non-game days? The Sport Management and Related Topics Journal, 3(2), 23–34.

Neiper, A. (2005). Nutritional supplement practices in UK junior national track and field athletes. British Journal of Sports Medicine, 39, 645–649.

Palumbo, C. M. (2000). Case problem: Nutrition concerns related to the performance of a baseball team. Journal of the American Dietetic Association, 100, 704–705.

Rosenbloom, C. A., Jonnalagadda, S. S., & Skinner, R. (2002). Nutrition knowledge of collegiate athletes in a Division I National Collegiate Athletic Association institution. Journal of the American Dietetic Association, 103, 418–421.

Rockett, H. R., Breitenbach, M., Frazier, A. L., Witschi, J., Wolf, A. M., Field, A. E., & Colditz, G. A. (1997). Validation of a youth/adolescent food frequency questionnaire. Preventive Medicine, 26(6), 808–16.

Rockett, H. R., Wolf, A. M., & Colditz, G. A. (1995). Development and reproducibility of a food frequency questionnaire to assess diets of older children and adolescents. Journal of the American Dietetic Association, 95(3), 336–40.

Turner, L. W., and Bass, M. A. (2001). Osteoporosis knowledge, attitudes, and behaviors of female collegiate athletes. International Journal of Sports Nutrition and Exercise Metabolism, 11, 482–489.

U.S. Department of Health and Human Services & U.S. Department of Agriculture. (January 2005). Dietary Guidelines, 2005. (6th ed.). Washington, DC: U.S. Government Printing Office.

Wilta, B., Stombaugh, I., & Buch, J. (1995). Nutrition knowledge and eating practices of young female athletes. Journal of Physical Education, Research, & Dance, 66, 36–41.

Zawila, L. G., Steib, C. M., & Hoogenboom, B. (2003). The female collegiate cross-country runner: Nutritional knowledge and attitudes. Journal of Athletic Training, 38(1), 67–74.

2016-10-12T10:33:47-05:00January 7th, 2008|Contemporary Sports Issues, Sports Exercise Science, Sports Management, Sports Studies and Sports Psychology|Comments Off on Nutrition-related knowledge, attitude, and dietary intake of college track athletes
Go to Top